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Abstract

The W-S (Wake-Sleep) algorithm is a simple learning rule for the models
with hidden variables. It is shown that this algorithm can be applied to
a factor analysis model which is a linear version of the Helmholtz ma-
chine. But even for a factor analysis model, the general convergence is
not proved theoretically. In this article, we describe the geometrical un-
derstanding of the W-S algorithm in contrast with the EM (Expectation-
Maximization) algorithm and the em algorithm. As the result, we prove
the convergence of the W-S algorithm for the factor analysis model. We
also show the condition for the convergence in general models.

1 INTRODUCTION

The W-S algorithm[5] is a simple Hebbian learning algorithm. Neal and Dayan applied the
W-S algorithm to a factor analysis model[7]. This model can be seen as a linear version of
the Helmholtz machine[3]. As it is mentioned in[7], the convergence of the W-S algorithm
has not been proved theoretically even for this simple model.

From the similarity of the W-S and the EM algorithms and also from empirical results, the
W-S algorithm seems to work for a factor analysis model. But there is an essential differ-
ence between the W-S and the EM algorithms. In this article, we show the em algorithm[2],
which is the information geometrical version of the EM algorithm, and describe the essen-
tial difference. From the result, we show that we cannot rely on the similarity for the reason
of the W-S algorithm to work. However, even with this difference, the W-S algorithm works
on the factor analysis model and we can prove it theoretically. We show the proof and also
show the condition of the W-S algorithm to work in general models.



2 FACTOR ANALYSIS MODEL AND THE W-S ALGORITHM

A factor analysis model with a single factor is defined as the following generative model,

Generative model x � �� yg � �,
where x � �x�� � � � � xn�T is a n dimensional real-valued visible inputs, y �
N ��� �� is the single invisible factor, g is a vector of “factor loadings”, � is the
overall means vector which is set to be zero in this article, and �� N ��� �� is the
noise with a diagonal covariance matrix, � � diag���i �. In a Helmholtz machine,
this generative model is accompanied by a recognition model which is defined as,

Recognition model y � rTx� �,
where r is the vector of recognition weights and � � N ��� s�� is the noise.

When data x�� � � � �xN is given, we want to estimate the MLE(Maximum Likelihood Es-
timator) of g and �. The W-S algorithm can be applied[7] for learning of this model.

Wake-phase: From the training set fxsg choose a number of x randomly and for each
data, generate y according to the recognition model y � rTt x� �� � � N ��� s�t �.
Update g and � as follows using these x’s and y’s, where � is a small positive
number and � is slightly less than 1.

gt�� � gt � ��x� gty�y (1)

��i�t�� � ���i�t � ��� ���xi � gi�ty��� (2)

where denotes the averaging over the chosen data.

Sleep-phase: According to the updated generative model x � ygt�� � �� y �
N ��� ��� � � N ��� diag���t����, generate a number of x and y. And update r
and s� as,

rt�� � rt � ��y � rTt x�x (3)

s�t�� � �s�t � ��� ���y � rTt x�
�� (4)

By iterating these phases, they try to find the MLE as the converged point.

For the following discussion, let us define two probability densities p and q, where p is the
density of the generative model, and q is that of the recognition model.

Let � � �g� ��, and the generative model gives the density function of x and y as,

p�y�x��� � exp
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while the recognition model gives the distribution of y conditional to x as the following,

q�yjx��� � N �rTx� s���

where, � � �r� s��. From the data x�� � � � �xN , we define,

C �
�

N

NX
s��

xsxs
T � q�x� � N ��� C��

With this q�x�, we define q�y�x��� as,

q�y�x��� � q�x�q�yjx��� � exp
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3 THE EM AND THE em ALGORITHMS FOR A FACTOR
ANALYSIS MODEL

It is mentioned that the W-S algorithm is similar to the EM algorithm[4]([5][7]). But there
is an essential difference between them. In this section, first, we show the EM algorithm.
We also describe the em algorithm[2] which gives us the information geometrical under-
standing of the EM algorithm. With these results, we will show the difference between
W-S and the EM algorithms in the next section.

The EM algorithm consists of the following two steps.

E-step: Define Q����t� as,

Q����t� �
�

N

NX
s��

Ep�yjxs��t� 	log p�y�xs���


M-step: Update � as,

�t�� � argmax
�
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(7)

Ep 	�
 denotes taking the average with the probability distribution p. The iteration of these
two steps converges to give the MLE.

The EM algorithm only uses the generative model, but the em algorithm[2] also uses the
recognition model. The em algorithm consists of the e andm steps which are defined as the
e and m projections[1] between the two manifolds M and D. The manifolds are defined
as follows.

Model manifold M : M def
� fp�y�x���j� � �g� diag���i ��� g � Rn� � � �i ��g.

Data manifold D: D
def
� fq�y�x���j� � �r� s��� r � Rn� � � s ��g, q�x� include the

matrix C which is defined by the data, and this is called the “data manifold”.
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Figure 1: Information geometrical understanding of the em algorithm

Figure 1 schematically shows the em algorithm. It consists of two steps, e andm steps. On
each step, parameters of recognition and generative models are updated respectively.



e-step: Update � as the e projection of p�y�x��t� on D.

�t�� � argmin
�

KL�q���� p��t�� (8)

rt�� �
���
t gt
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where KL�q���� p���� is the Kullback-Leibler divergence defined as,

KL�q���� p���� � Eq�y�x���

�
log

q�y�x���

p�y�x���

�

m-step: Update � as the m projection of q�y�x��t� on M .

�t�� � argmin
�

KL�q��t���� p���� (10)

gt�� �
Crt��

s�t�� � rTt��Crt��
� �t�� � diag

�
C � gt��r

T
t��C

�
� (11)

By substituting (9) for rt�� and s�t�� in (11), it is easily proved that (11) is equivalent to
(7), and the em and EM algorithms are equivalent.

4 THE DIFFERENCE BETWEEN THE W-S AND THE EM
ALGORITHMS

The wake-phase corresponds to a gradient flow of the M-step[7] in the stochastic sense.
But the sleep-phase is not a gradient flow of the E-step. In order to see these clear, we show
the detail of the W-S phases in this section.

First, we show the averages of (1), (2), (3) and (4),

gt�� � gt � ��s�t � rTt Crt�

�
gt �
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�
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�
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(14)

s�t�� � s�t � ��� ��
�
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As the K-L divergence is rewritten as KL�q���� p����,
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the derivatives of this K-L divergence with respect to � � �g� �� are,
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With these results, we can rewrite the wake-phase as,
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Since � is a positive definite matrix, the wake-phase is a gradient flow of m-step which is
defined as (10).

On the other hand, KL�p���� q���� is,
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�
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n
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The derivatives of this K-L divergence respect to r and s� are,
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Therefore, the sleep-phase can be rewritten as,

rt�� � rt �
�

�
s�t

�

�rt
KL�p��t���� q��t�� (22)

s�t�� � s�t � ��� ���s�t �
� �

��s�t �
KL�p��t���� q��t��� (23)

These are also a gradient flow, but because of the asymmetricity of K-L divergence, (22),
(23) are different from the on-line version of the m-step. This is the essential difference
between the EM and W-S algorithms. Therefore, we cannot prove the convergence of the
W-S algorithm based on the similarity of these two algorithms[7].
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Figure 2: The Wake-Sleep algorithm

5 CONVERGENCE PROPERTY

We want to prove the convergence property of the W-S algorithm. If we can find a Lyapnov
function for the W-S algorithm, the convergence is guaranteed[7]. But we couldn’t find it.
Instead of finding a Lyapnov function, we take the continuous time, and see the behavior
of the parameters and K-L divergence, KL�q��t�� p��t��.

KL�q���� p���� is a function of g, r, � and s�. The derivatives with respect to g and �
are given in (16) and (17). The derivatives with respect to r and s� are,
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On the other hand, we set the flows of g, r, � and s� to follow the updating due to the W-S
algorithm, that is,

d

dt
g � ����s�t � rTt Crt�
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With theses results, dKL�q��t�� p��t��
dt is,
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First 3 terms in the right side of (30) are apparently non-positive. Only the 4th one is not
clear.

�KL

��s��

d�s��

dt
� ���

�
s�t �

�
��� gTt rt�

� � rTt �trt
���

� � gTt �
��
t gt �

�

s�t

�

� �
� � gTt �

��
t gt

s�t

�
s�t �

�
��� gTt rt�

� � rTt �trt
���

s�t �
�

� � gTt �
��
t gt

�
�

The KL�q��t�� p��t�� does not decrease when s�t stays between ���� gTt rt�
� � rTt �trt�

and �
�� � gTt �
��
t gt�, but if the following equation holds, these two are equivalent,

rt �
���
t gt

� � gTt �
��
t gt

� (31)

From the above results, the flows of g, r and � decrease KL�q��t�� p��t�� at any time. s�t
converge to ����gTt rt�

��rTt �trt� but it does not always decreaseKL�q��t�� p��t��. But
since r does converge to satisfy (31) independently of s�t , finally s�t converges to �
�� �
gTt �

��
t gt�.

6 DISCUSSION

This factor analysis model has a special property that p�yjx��� and q�yjx��� are equivalent
when following conditions are satisfied[7],

r �
���g

� � gT���g
� s� �

�

� � gT���g
� (32)

From this property, minimizing KL�p���� q���� and KL�q���� p���� with respect to �
leads to the same point.

KL�p���� q���� �Ep�x���

�
log

p�x���

q�x�

�
�Ep�y�x���

�
log

p�yjx���

q�yjx���

�
(33)

KL�q���� p���� �Eq�x�

�
log

q�x�

p�x���

�
�Eq�y�x���

�
log

q�yjx���

p�yjx���

�
� (34)

both of (33) and (34) include � only in the second term of the right side. If (32) holds,
those two terms are 0. Therefore KL�p���� q���� and KL�q���� p���� are minimized at
the same point.



We can use this result to modify the W-S algorithm. If the factor analysis model does not
try wake- and sleep- phase alternately but “sleeps well” untill convergence, it will find the
� which is equivalent to the e-step in the em algorithm. Since the wake-phase is a gradient
flow of the m-step, this procedure will converge to the MLE. This algorithm is equivalent
to what is called the GEM(Generalized EM) algorithm[6].

The reason of the GEM and the W-S algorithms work is that p�yjx��� is realizable with the
recognition model q�yjx���. If the recognition model is not realizable, the W-S algorithm
won’t converge to the MLE. We are going to show an example and conclude this article.

Suppose the case that the average of y in the recognition model is not a linear function of
r and x but comes through a nonlinear function f��� as,
Recognition model y � f�rTx� � �,
where f��� is a function of single input and output and � � N ��� s�� is the noise. In
this case, the generative model is not realizable by the recognition model in general.
And minimizing (33) with respect to � leads to a different point from minimizing (34).
KL�p���� q���� is minimized when r and s� satisfies,

Ep�x���

�
f�rTx�f ��rTx�x

�
� Ep�y�x���

�
yf ��rTx�x

�
(35)

s� � ��Ep�y�x���

�
��yf�rTx� � f��rTx�

�
� (36)

while KL�q���� p���� is minimized when r and s� satisfies,

�� � gT���g�Eq�x���

�
f�rTx�f ��rTx�x

�
� Eq�x���

�
f ��rTx�xxT

�
���g (37)

s� �
�

� � gT���g
� (38)

Here, f ���� is the derivative of f���. If f��� is a linear function, f ���� is a constant value and
(35), (36) and (37), (38) give the same � as (32), but these are different in general.

We studied a factor analysis model, and showed that the W-S algorithm works on this
model. From further analysis, we could show that the reason why the algorithm works
on the model is that the generative model is realizable by the recognition model. We also
showed that the W-S algorithm doesn’t converge to the MLE if the generative model is not
realizable with a simple example.
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