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Abstract

We study a population decoding paradigm in which the maximum likeli-
hood inference is based on an unfaithful decoding model (UMLI). This
is usualy the case for neura population decoding because the encod-
ing process of the brain is not exactly known, or because a simplified
decoding model is preferred for saving computational cost. We calcu-
late the decoding error of UMLI and show an example of an unfaith-
ful model which neglects the neuronal correlation. The performance of
UMLI is compared with that of the maximum likelihood inference based
on afaithful model and that of the center of mass decoding method. It
turns out that UMLI has advantage of decreasing the computational com-
plexity remarkablely and maintaining a high level decoding accuracy at
the sametime.

1 Introduction

It is certainly one of central issues in computational neuroscience to understand how the
population of neural activities can encode, decode and/or infer the external world [4, 9, 12].
In population coding paradigm, various decoding methods have been investigated, partic-
ularly including the maximum likelihood inference (ML1), the center of mass (COM), the
complex estimator (CE) and the optimal linear estimator (OLE) (see[10, 11] and reference
therein). Among them, MLI has advantage such that it can asymptotically achieve the op-
timal decoding accuracy, that is, the Cramér-Rao bound. One cavest is, though, that it may
suffer the expense of computational complexity, depending upon the choice of decoding
model, for example, in comparison with COM.

Let us consider a population N neurons coding a variable . The encoding process is
specified by the conditional probability ¢(r|z), where the vector r = {r;} represents the
population activities. Denote by p(r|z) the decoding model on which MLI is based. So
far, when people study MLI for population decoding, it normally (implicitly) assumes that
p(r|z) = q(r|z) and the decoding error is calculated by the inverse of the Fisher informa-
tion J = [ p(r|z)[d1n p(r|z)/dz]*dr. However, the encoding model ¢(r|z) is usually not
completely known in reality, since it stands for how the brain encodes the variable . Thus,
a decoding paradigm in which the assumed decoding model is different from the encoding
one needs to be studied. In the context of statistical theory, thisis called estimating based
on an unfaithful model. Hereafter, we call the decoding paradigm of using MLI based on



an unfaithful model, UMLI, to distinguish the classical ML based on the correct model.

UMLI turns out to have an attracting property. When a properly simplified unfaithful model
is used, it can remarkablely decrease computational cost and at the same time maintain a
high-level decoding accuracy. Thisis confirmed in our calculation in Sec.3 and 4, where
an uncorrelated neuron response model is used for decoding to replace the real correlated
one.

The paper is organized as follows. The decoding error of UMLI is derived in Sec.2. An
example of an unfaithful model is given in Sec.3, which neglects the correlation between
the neurons’ response. In Sec.4, the performances of UMLI, MLI and COM are compared
when the tuning functions are triangular ones. Some overall discussion and conclusion are
givenin Sec.5.

2 Thedecoding error of UMLI

The decoding error of MLI based on an unfaithful model has been studied in the statistical
theory [2, 8]. Here we generate it to the case of population coding. The result also holds
for MLI.

For clearance, we introduce some notations. V f(z) denotes df (z)/dx. E,[f(x)] and
Vq[f(x)] denote respectively the mean value and the variance of f(x) with respect to the
distribution ¢(r|x).

Given an observation of population activity, r*, the ML estimate 7 is the value of x that
maximizes the likelihood L(r*,z) = Inp(r*|z). Denote by zgpt the optimal value of &
which satisfies £, [V L(r*, zgpt)] = 0.

Let us consider the expansion of VL(r*, &) at zopt,
VL(r*,2) =~ VL(r*,zopt) + VVL(r*, zopt) (Z — zopt)- (@)
Since VL(r*,z) = 0, we have
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where N isthe number of neurons.

We consider that the neuronal correlation is negligible when their preferred stimuli is dif-
ferent enough. More precisely, we consider the case where the martingale convergence
theorem holds. So, when NN is large, by the weak law of large numbers,
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The random variable VL (r*, zgpt) /v/N haszero mean, since E, [V L(r, zopt) /v/N] = 0,
and variance proportional to G/N, where G is defined by

G = Vy[VL(r, zopt)]- @)
Therefore, the total decoding error of UMLI is
(& — 2) ~ (zopt — ) + Q 'G'’e, ©)

where € is arandom variable with zero mean and variance 1.



Note that when a faithful model is used, i.e, p(r|z) = ¢(r|z), we have zopt = = and
G = Q = V,[VL(r, z)] isthe Fisher information. The decoding error is then the Cramér-
Rao bound. When an unfaithful model is used, G and @ are usually different from the
Fisher information, and the decoding error is larger than the Cramér-Rao bound.

We should point out that the above result is derived based on the condition that the neuronal
correlation is negligible when their preferred stimuli is quite different. More generally, we
need to use the martingale convergence theorem which guarantees the convergence for
correlated signals. If this condition is not satisfied, the result may not hold. Thisis also
true for MLI. We have found simple conditions which guarantee that both the central limit
theorem and the law of large numbers hold.

3 Anunfaithful model of neglecting the neuronal correlation

Cross-correlation in neuronal activity isobserved in both primary sensory and motor areas,
where population coding is believed to be used [3, 7, 13]. There have been a number
of works analyzing the effect of correlation on the MLI decoding accuracy. [1, 14]. Their
calculation is based on the assumption that the encoding and decoding models are the same.
Taking into account the complexity of the neuronal correlation, it isof practical importance
to consider a decoding paradigm without using the information of the correlation. The
simplest way is to neglect the neuronal correlation.

Consider a pair-wise correlated neural response model in which the neuron activities are
assumed to be multivariate Gaussian

S PR L v Ee S ) /o
q(r|z) = (2N det(A) exp| D) %:A ij(ri — fi(®))(rj — fi(x))/o”],  (6)
where f;(x) is the mean value of the response of the ith neuron representing its tuning
function,
((ri = fi(z))) = 0. )
A isthe covariance matrix, which is defined by
((ri = fi(2))(r; = f;(2))) = 02 Ajj. )

For simplicity we assume it is stimulus-independent. The matrix A~! isitsinverse.

The decoding error of MLI has been calculated in [1, 14], which is
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where f/(z) = df;(x)/dz.

Consider adecoding model which neglects the correlation while keeps the tuning functions
unchanged,

1 2 /0 2
p(r|z) = W exp[— Z(rl — fi(z))*/207]. (10)

The UMLI estimateis the solution of Z
Vinp(r,#) = Y [ri— fi@)]fi(#)
= o.l (11)
From E,[V Inp(r, zopt)] = 0, we can get
> lfi(x) = filzop)]f (wopt) =0 (12)
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Hence zopt = = and UMLI isan unbiased estimator in the present case.

From the eq.(3) and (4), we get

o = —=UE) 13)
o = ZullOLE w

(15)

Compared with MLI, UMLI has equivalent or larger decoding error according to the
Cramér-Rao bound. Whereas, by omitting the operation of updating matrix inversein MLI,
UMLI largely decreases the computational cost.

To evaluate the performance of UMLI, we compare it with COM [5]. COM is a simple

decoding scheme without using any information of the encoding process, whose estimate

is

Lulict, (1)
DT

where ¢; is the preferred stimulus of the ith neuron. The shortcoming of COM is the
large decoding error. Without loss of generality, we assume that the preferred stimuli is
symmetrically distributed around the stimulus z, which leads to » ", fi(z)c; = 0. This
assures that an unbiased COM estimate can be obtained.

T =

It is not difficult to calculate the decoding error of COM, which is given by,

O’2 . AijCiCj
(@~ 2))com ~ [gw ar)

4 Performance comparison: the case of triangular tuning functions

To show the different performances of the above three methods, we consider the tuning
functions to be triangular ones,

sy ={ Il als (19)

where the parameter « is the tuning width. A good point of the triangular function (due to
itslineariality) is that the decoding errors of MLI and UMLI can be exactly (not asymptot-
ically) calculated by the egs. (9) and (15) (see Appendix).

We assume that the preferred stimuli isuniformly distributed and locateat ¢; = (i —1/2)L
fori = —o0, - - -, 0o being integer, where L isthe minimum distance between the preferred
stimuli. The tuning width a takes value of nL with n an integer, and there are 2n numbers
of neurons involved in the decoding precess (We set r; = 0 when f;(xz) = 0 to make the
Gaussian response model feasible.). The comparisonisdoneat « = 0.

Two kinds of correlation structures are considered. One is of limited-range correlation,
with the correlation matrix written as[1, 13]

Ayj = o?pli—il, (19)



where the parameter p (with 0 < p < 1) determines the range of the correlation in the
population. The inverse of the covariance matrix is

1+ p? p

=, [6ij = 1 2 (Git1,5 + 6i—1,5)] (20)
Thismodel captures a fact that the correlation strength between neurons decrease with the
dissimilarity in the preferred stimuli, a property often observed in cortical areas.

-1 _
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Fig.1(a) shows the results of the three methods. We see that UMLI has lower decoding
error than that of COM with a difference increasing with the tuning width. Compared
with MLI, UMLI has larger decoding error with the relative difference, defined by [((Z —
$)2>UML| - ((HAS—HS)2>ML|]/<(§Z—:U)2>ML|, decreases with the tuning width. Thismeans
UMLI becomes more comparable to MLI as the tuning width islarger.

In the above cal culation we haven’t considered neuronal spontaneous activity. If thisfactor
isincluded, for example, set f;(z) = v when |z — ¢;| > a, where -y is a small positive
constant, the decoding error of COM will becomelarger (In this case, we need to restrict the
range of stimuli to avoid the divergence of the decoding error). Its performance will have a
property of decreasing with the tuning width when the tuning width is small, and increasing
when the tuning width is large, a behavior observed in [12]. Whereas, the performance of
MLI and UMLI won't be affected due to their nature of decoding using the derivative of
the tuning functions. Thus, adding a spontaneous term will only enlarge the superiority of
UMLI with respect to COM.

The other correlation structure we study isan uniform one[1, 6] with the correlation matrix
written as

Ai]' = (si]' + C(l - 6i]~), (21)
where the parameter ¢ (with —1 < ¢ < 1) determines the correlation strength. Theinverse
of the covariance matrix is
dij(2nc+1—-c¢) —c

A= e e (22)
The decoding errors of the three methods are cal culated to be
(@ —2))mLr = % (23
(@—-2))umLr = % (24)
(G = ooy = (1- c)ng;(élnz —1) 25

Fig.1(b) shows the results of the three methods. We again observe that the decoding error
of UMLI is lower than that of COM with the difference increase with the tuning width.
And interestingly, UMLI has the same performance as MLI.

It is interesting to point out that, for general tuning functions and the uniform correlation
model, we need to check if the law of large numbers and the central limit theorem hold.
If not, we can’'t calculate the decoding errors of MLI and UMLI by using the formulas
(9) and (15). We have proved that they hold in our cases from the facts that . f/(z) =
>, fi'(z) = 0, athough its proof is omitted.

5 Conclusion and discussion

In summary we studied the population decoding paradigm of using MLI and basing on an
unfaithful decoding model. This is motivated by the fact that the encoding process of the
brain isusualy not exactly known to the estimator.
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Figure 1: Comparing the decoding errors of UMLI, MLI and COM. The parameters L and
o are both set to be 0.1. (a)The correlation structure is of limited range with p = 0.5; (b)
The correlation structure is uniform with ¢ = 0.5.

We derived the decoding error of UMLI. The performance of UMLI is compared with that
of MLI and COM in an example of an unfaithful model where the neurona correlation is
neglected. It turns out that UMLI has lower decoding error than that of COM. Compared
with MLI, UMLI decreases the computational cost remarkablely by omitting the matrix
inverse updating. Thus, UMLI is a good compromise between the decoding accuracy and
the computational cost. Recently, the work of Pouget et al. has shown that a biological
feasible recurrent network could implement MLI when no neuronal correlation isinvolved
[10]. Itis of the future work to understand the biological implication of UMLI.

Appendix: Thedecodingerrorsof MLI and UMLI in the case of
triangular tuning functions

For the triangular tuning function,

fit) = { fo el rma <p e Fe (26)

where sign(z — ¢;) denoting the sign of (z — ¢;). Thefunction f/(z) issingular at ¢; = =
and ¢; = = + a. Without loss of generality, we assume no such preferred stimuli exist..
We denote f'(z) = {f/(z)}, f(z) = {fi(z)}, andr = f(z) + € where & = {¢;} and {&;}
are random numbers satisfying
& = 0, (27)
(€i&5) o’ Agj. (28)

The MLI estimate is the solution of
Ving(r|z) =0. (29)
Substituting the eg. (6) into (29), we get
[r— f(£)]A ' (z)" =0, (30)

where T" stands for the transposition operation.



Suppose # is close enough to x, we have

r—f(z) =&+ (2 —2)f' (z). (31
Therefore,
—1er T
by AW @
f'(z)A—1f'(x)
and
P —o)?) - (39)
r —T = .
(@ =) mL £ (2) A1 (z)"
Itis easy to see that the above result agrees with that of the eq. (9).
Similarly, the decoding error of UMLI is calculated to be
R o2af () Af (2)T
((# —2)")ymL = (4712 (@) ; (34)
which agrees with the eq.(15).
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