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Humans and primates can learn a large
variety of skills and patterns of movement.
How is the information about their spatio-
temporal patterns encoded in our brain? Re-
cent animal experiments and human brain
imaging studies suggest that the global net-
works linking specific parts of the cerebel-
lum, the basal ganglia, and the cerebral cor-
tex are involved in learning and execution of
sequential movement. Execution of sequen-
tial movement initially requires attention but
becomes automatic after repeated practice.
We postulate that this process is supported
by the use of different coordinate systems as
well as different algorithms.

In a visuo-motor task, a sequence can be
defined either as a series of moving targets in
the visual space or as a series of body move-
ment (Figure 1B). We propose that visual
representation of sequence is used in the cir-
cuit linking the anterior basal ganglia and the
prefrontal cortex (the visual network) while
body-based representation is used in the cir-
cuit linking the posterior basal ganglia and
the motor cortex (the motor network). Se-
quence representation using the visual coor-

dinate is advantageous for quick learning whereas

sequence representation in the motor coordi-
nate is advantageous for real-time control.
We built a neural network model of visuo-
motor sequence learning which included two
recurrent networks, one using visual coordi-
nate and the other using motor coordinate
(Figure 2). Learning is based on the ”tempo-

ral difference” reinforcement learning paradigm,

which has recently been proposed as a func-
tional model of the midbrain dopaminergic
system (Schultz et al., 1997). The model was
used to simulate the sequence learning exper-
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Figure 1: A. The 2x5 task for monkeys (Hikosaka et
al., 1995). A subject presses five sets two LED but-
tons in a pre-determined order, which has to be found
by trial and error. Liquid reward is given after com-
pletion of each set of two key presses. The amount
of reward is increased as the progress through a five-
set sequence, called a hyper set. When the subject
makes an error, the trial is terminated and restarted.
A hyperset is used repeatedly until the number of
successfully completed trials reaches to a criterion
(10 or 20). Each training day, several hypersets are
used for training; some of them are repeatedly used
everyday and others are newly generated and used
only once. B. Two possible ways of representing a
movement sequence. Upper panel: to encode the se-
quence of the visuospatial locations of the buttons to
be pressed (visual sequence). Lower panel: to encode
the sequence of target postures, for example, by arm
joint angles (motor sequence: lower panel).
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Figure 2: The network model of sequence learning
using visual and motor representations (Nakahara et
al., 1997). The visual network corresponds to the
anterior basal ganglia and its target cortical area,
the dorsolateral prefrontal cortex (DLPF). The mo-
tor network corresponds to the posterior basal gan-
glia and its target cortical area, including the sup-
plementary motor area (SMA). The pre-SMA, which
links the visual and motor networks, works as a co-
ordinator between the two networks by modulating
the the motor network output based on the visual
network output. The ventral premotor are (PMv)
transforms the visual network output, which is in vi-
sual coordinate (target spatial position), into motor
coordinate (desired joint angles). The outputs of the
visual and motor networks converge at the primary
motor cortex (M1). A sequence is learned simultane-
ously by the visual and motor networks based on a
reinforcement learning algorithm known as “tempo-
ral difference (TD)” learning.

iments in monkeys, called the “2x5 task”. It
was found in monkeys that the blockade of
the anterior basal ganglia disrupted acquisi-
tion of new sequences whereas the blockade
of the posterior basal ganglia disrupted exe-
cution of well learned sequences (Miyachi et
al., 1997). The network model replicated this
experimental result with the blockade of the
visual and motor networks (Nakahara, 1997;
Nakahara et al., 1997).

We further performed a human behavioral
experiment to investigate the hypothesis that
a subject initially uses visual representation
and gradually depends more on motor rep-
resentation of sequence. Subjects pressed a
series of keys on a keypad in response to
the visual stimuli on the screen. Transfer
of response time performance was tested in
two altered conditions: VISUAL condition
in which the same key was pressed using dif-
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Figure 3: The experiment for assessing the repre-
sentations of movement sequence (Bapi et al., 1998,
1999). A subject is trained in the 2x10 task, which is
similar to the 2x5 task described in Figure 1, in the
NORMAL display-keypad setting. The performance
of the subject was tested in two altered settings. In
VISUAL setting, the orientation of the hand is ro-
tated 90 degrees, requiring different finger movement
for pressing the same key sequence. In MOTOR set-
ting, the keypad is also rotated 90 degrees, resulting
in the same finger movement as in NORMAL to reach
spatially relocated keys.

ferent finger movement and MOTOR condi-
tion in which the keys were relocated but the
same finger movement was used to press the
keys. The response time was initially similar
for both conditions, but after about one hour
of practice, significantly better transfer was
seen in MOTOR condition (Bapi and Doya,
1998, 1999).

In addition to the use of multiple represen-
tations, the differential involvement of brain
areas in early and late stages of sequence
learning may also be due to the use of dif-
ferent action selection algorithms. FExperi-
mental and theoretical evidence suggests that
the the cerebellum, the basal ganglia, and
the cerebral cortex are specialized, respec-
tively, in supervised, reinforcement, and un-
supervised learning paradigms (Doya, 1999).
The theory of reinforcement learning and dy-
namic programming and provides several can-
didate architectures for utilizing those learn-
ing modules. The simplest architecture in-
volves a stochastic action selection network
and a state evaluation of the current state
(Figure 4A). The evaluation network learns
to predict future reward based on the cur-
rent state. The temporal difference in the
predicted reward is used as the reinforcing
signal for the action selection network. In a
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Figure 4: Possible implementation of different se-
quence learning algorithms in the circuit linking the
cerebellum, the basal ganglia, and the cerebral cor-
tex. A. A reactive, stochastic action selection net-
work is trained with the help of a predictive reward
signal from the evaluation network. The evaluation
network trains itself by comparing its prediction with
the actual delivery of reward. Such a mechanism can
be implemented, for example, by the network linking
the supplementary motor area (SMA) and the pos-
terior basal ganglia. B. A candidate of action is fed,
together with the current state of the body and the
environment, to the internal model of the body and
the environment to predict the next state. The eval-
uation of the predicted state is compared with that
of the current state. The candidate action is put to
execution if it is expected to improve the state. Such
a mechanism can be implemented by the network
liking the prefrontal and rostral premotor cortices,
the ventral lateral cerebellum, and the anterior basal
ganglia.

more elaborate architecture (Figure 4B), an
internal model of the environmental dynam-
ics is used for the prediction of the next state
if a candidate of action is taken. The evalua-
tions for the predicted and the current states
are compared and the action is executed if it
is expected to improve the evaluation. Re-
sults of brain imaging and neuron recording
suggest that the first algorithm that uses re-
active, stochastic action selection is used in
the network liking the SMA and the basal
ganglia. The second algorithm can be imple-
mented in the network linking the prefrontal
and rostral premotor areas, the ventrolateral
cerebellum, and the basal ganglia.

In summary, humans and primates can
utilize multiple representations and algorithms
for learning and control of sequential move-
ment. Multiple parallel loops linking the cere-
bellum, the basal ganglia, and the cerebral
cortex would enable both quick acquisition

and robust, automatic execution. Similar mech-

anisms may be used for cognitive tasks that
involve sequential processing.
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