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Abstract

We consider two methods to optimize the distribution
of preferred stimulus in a population code based on the
knowledge of the distribution of stimulus. One method
is to maximize the mean Fisher information of the popu-
lation with respect to the stimulus ensemble. The other
is to minimize the lower bound of the mean decoding
error. The implication of the two methods is discussed.

1 Introduction

In a population code information is processed dis-
tributely by the joint activities of a group of neurons
[2, 7, 11, 15, 16, 17]. Neurons, for example, in early sen-
sory areas, respond to stimuli with their tuning functions
and, as a group, should cover the whole range of poten-
tially valuable stimuli. A stimulus induces a dynamic
state of the population from which the brain would infer
the external world. A good property of the population
code is that the noise in the coding of a single neuron can
be averaged out. Some biological evidences support the
population code[12]. For example, in the medial tem-
poral region (MT), the joint activities of neurons may
encode the direction of visual motion [8, 9].

In this study, we consider the problem of optimizing
the distribution of preferred stimulus (DPS) in a pop-
ulation code with respect to the probabilistic nature of
stimuli. Stimulus ensembles often possess some statis-
tical structures, for example, the translation- and scale-
invariant property in the ensemble of natural images|[1,
5, 6]. This regularity is believed to be utilized in early vi-
sion processing to construct an efficient coding [1]. Hence
it is interesting to investigate how the structure of the
stimulus ensemble affects the optimal population coding.
Brunel and Nadal [3] discussed the relationship between
Fisher information and mutual information in the con-
text of population code. The former is more related to
the decoding accuracy and the latter to the encoding ac-
curacy. They obtained optimal DPS through maximiz-
ing the mutual information between the stimulus and
the response for the one dimensional case. In this work

we solve the same problem based on the Fisher informa-
tion. To consider optimization in a coding scheme, it is
important to specify the nominal criterion for optimiza-
tion (i.e., the cost function). We discuss two different
optimization criterion. One is to maximize the mean
Fisher information of the population with respect to the
stimulus ensemble, and the other is to minimize the lower
bound of the mean decoding error.

2 Maximizing the Mean Fisher
Information

Consider a population of N neurons coding a variable
xz. Denote r = {r;} the activities of neurons, i.e., the
number of spikes emitted by neurons during a fixed time
interval. The mean value of r; after many trials is given

by

(ri) = fi(x), (1)
where f;(x) is the tuning function of the ith neuron, here
assumed to be a normalized Gaussian,
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where ¢; is the preferred stimulus of the ith neuron.

In a population code, encoding can be considered from
the conditional probability P(r|z) and decoding from
P(z|r). For simplicity we assume all neurons’ activities
are uncorrelated, i.e.,

P(rlz) = HP(HIHJ)- (3)

There are two common noise models to determine
P(r;|x). One model assumes that r; is Poisson dis-
tributed, i.e.,
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The other one assumes r; is Gaussian distributed, i.e.,
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where o is the variance.

For any unbiased estimate &, the Fisher information
provides a useful measure for the decoding accuracy,
that is, the averaged square decoding error ((# — z)2)
is greater than or equal to the inverse of the Fisher in-
formation J,. This is called the Cramér-Rao bound [4].
In a population code, the Fisher information is given by

/P(r|a:) [%ﬁgﬂaj)rdr
= 2 Jew (6)

where J, , is the Fisher information of the ith neuron,

Jeiw = /P(ri|a¢) [%ﬁimrdri. (7)
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Maximum likelihood (ML) inference is a decoding
scheme to asymptotically achieve the Cramér-Rao bound
when there is no correlation between neurons’ responses
(If correlation is considered, the asymptotically efficiency
of ML inference needs to be carefully checked [17].). Re-
cently, the work of Pouget et al. [13] shows that a bio-
logically reasonable recurrent network could perform ML
inference in the case without correlations. In this work,
since we only consider the case that all neurons’ activ-
ities are uncorrelated, we may regard the Cramér-Rao
bound as a realizable limit.

In the large N limit, we can write

() = =

/ Joa P(c)de, (8)

where (J;) is the mean Fisher information of the popu-
lation with respect to the stimulus z, P(c) is the distri-
bution of preferred stimulus.

Suppose the distribution of the stimulus is P(z), the
mean Fisher information of the population with respect
to the stimulus ensemble is given by

(Jy = / T P(6) P () deda. )

We can also write (J) as

(J) = / J.P(c)de, (10)

where

Lz/kﬁ@ﬂ, (11)

is the Fisher information of the neuron having preferred
stimulus c¢. Larger J. means that this neuron is more
informative with respect to the stimulus ensemble.

It is natural to maximize the mean Fisher information
(10) to get an optimal distribution of P(c). However,

this is an ill-posed problem [3]. The solution turns out
to be a § function, P(c) = d(c — ¢*), where ¢* denoting
the point where J. has the maximum value. It is easy
to see that this solution is unreasonable. Actually, when
there is only one neuron, it is impossible to construct an
unbiased estimator due to the symmetry of the tuning
function, that is, f(z) = f(2¢ — z). The stimuli z and
2¢ — z are indistinguishable. Therefore, the Cramér-Rao
bound for unbiased estimators by which the solution is
derived does not hold.

A way to make an ill-posed problem well-defined is to
impose a regularization constraint. Intuitively, we may
want P(c) to be distributed and to have a large value at
points where J, is large. This can be achieved by apply-
ing a regularization term corresponding to the Kullback
divergence between the normalized J. and P(c), ie.,
[ J.1n J./P(c)de, where J. = J./ [ J.de. In practice,
this regularization term is simplified to be [ J.Iln P(c)de,
since the difference between them is irrelevant to P(c).

In summary, the problem of optimizing DPS is con-
verted to

Maximizing (J) = /JCP(c)dc
+'y/Jc In P(c)de, (12)

Subject to /P(c)dc =1, (13)
P(c) >0, (14)

where + is a positive number.
The solution of the above optimization problem is

Ple) =

= (15)

where A is a constant to be determined by the normaliza-
tion condition (13). It is easy to check that P(c) > P(c)
when J. > Ju, which is the property we want. The
parameter 7 controls the balance between information
maximization and broad distribution.

Obviously, when P(z) is uniform, the optimal P(c) is
also uniform. As an another example, we consider P(x)
to be a Gaussian distribution,
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It is interesting to look into the property of J., which
essentially has two kinds of shape (see Fig.1). When
202 > 2, it has one peak centered at the original point
(Fig.1(a)); when 202 < p?, it has two peaks (Fig.1(b)).
The result for the Gaussian noise model is similar ex-
cept that the value 202 is replaced by o2. Fig.1 shows



examples of the optimal P(c) in two different parameter
settings. Intuitively, the result shows that if the stimulus
ensemble is broadly distributed, then the distribution of
preferred stimuli P(c) is also distributed.

An alternative choice of a regularization constraint is a
smoothness criterion, for example, [(dP(c)/dc)*dc. The
shortcoming of this criterion is that we need an assump-
tion on the form of P(c) to make sure that the constraint
(14) is satisfied.

0.03

0.02

0.015

0.010 -

0.005 -

0.000
-2

Figure 1: The optimal P(c) in two different parameter
settings. The noise model is the Poisson distribution one.
The full line denotes the normalized J,. The dashed
line denotes P(c). (a) p = 0.3,0 = 0.1,y = 0.05; (b)
©w=20.3,0 =0.3,7 =0.05.

3 Minimizing the Lower Bound of
the Mean Decoding Error

We can also solve the above optimization problem by
using a different criterion, that is, to minimize the lower
bound of the mean decoding error. According to the
Cramér-Rao bound, we have

o P()
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where ((:)) denoting the average over sampling and the
distribution of the stimulus.
Minimizing the right side of the above inequality with

respect to P(c) leads to
/ J..P(c)dec = AP(z)'/?, (19)

where A is a constant to be determined by the normal-
ization condition [ P(c)de = 1. To get the result (19),
we have used the condition that f Je,»dx is a constant,
which is generally true in the context of the present
study. Thus the optimal P(c) is obtained when the
convolution of P(c) with the Fisher information .J.,
matches the square root of the distribution of stimulus.
Note that the solution is different from the one obtained
by maximizing the mutual information, where the con-
volution of P(c) is to match P(z) instead of P(z)'/? [3].
The difference comes from the use of different criterion.
Recall that maximizing the mutual information is to en-
hance the encoding accuracy, whereas minimizing the
lower bound of the mean decoding error via the Cramér-
Rao bound is more related to the decoding accuracy.

4 Conclusion

In this study two approaches are employed to optimize
DPS in a population code based on the knowledge of
the distribution of stimulus. One is to maximize the
mean Fisher information with respect to the stimulus
ensemble. To make the problem solvable, we use a reg-
ularization term imitating the Kullback divergence be-
tween DPS and the normalized Fisher information with
respect to the stimulus ensemble. We found that depend-
ing upon the distribution of stimulus ensemble, double-
peaked DPS is possible. The connection of this finding
with biological neurons is a future research. The other
is to minimize the lower bound of the mean decoding
error. The present study aimed to briefly sketch the two
approaches by focusing solvable cases and to illuminate
their difference. Certainly, the feature research should
be extended to investigate a more biologically plausi-
ble situation of stimulus ensemble[10], higher dimension
case[19], and encoding-decoding relationship[18].
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