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ABSTRACT

The present study shows that an ICA-based method
can, e®ectively and blindly, classify a vast amount of
gene expression data into biologically meaningful groups.
Speci¯cally, we show (1) that genes, whose expression
data are sampled at di®erent times, can be classi¯ed
into several groups, based on the correlation of each
gene with independent component curves over time,
and (2) that these classi¯ed groups by ICA-based method
have a good match with the classi¯ed groups that are
determined by use of domain knowledge and consid-
ered to be a benchmark. These results suggest that
the ICA-based method can be a powerful approach to
discover unknown gene functions.

1. INTRODUCTION

Recent technical advances have led to a vast amount of
gene expression data, so that we have an urgent need
to develop technical tools to meet this rapid expansion
of data. One of important questions with given such
a data is how di®erent sets of genes work together, in
other words, how we can classify genes into biologi-
cally meaningful groups. Using a speci¯c type of data
(explained below), the present study shows that ICA-
based method is a promising approach to address this
question.

We used a microarray data, or a gene expression
data, of yeast during sporulation (process of germina-
tion), which is collected by Chu et al[3] and available

in public1. The data consists of expression data of 6118
genes in yeast genome, which were sampled at seven dif-
ferent times during sporulation (namely, 0.0, 0.5, 2.0,
5.0, 7.0, 9.0 and 11.5 hours). In other words, the data
can be understood as the matrix of 6118 rows and 7
columns, which correspond to the number of genes and
the sampled times, respectively. Each entry in the ma-
trix has a real value.

It is known by experiments that, during sporula-
tion, some speci¯c genes work at di®erent time periods
and that the expression of such genes changes signi¯-
cantly (positively or negatively) in comparison with the
ordinary level. It is not known, however, which of many
other genes work or not at di®erent time periods during
sporulation, whereas the gene expression data indicates
various changes in such genes at di®erent time periods.
Some of these unknown genes may play a crucial role in
sporulation. Hence, previously, several approaches are
employed, including gene clustering[5], principal com-
ponent analysis[6] and self-organization map[7].In the
present study, we examine ICA-based method and show
its validity, particularly in comparison with the method
of using domain knowledge and the method of PCA.

The following section is organized as follows. Sec-
tion 2 shows how the genes in the data are classi¯ed
into several groups by the previous study, using do-
main knowledge. Section 3 shows how the PCA-based
method classi¯es genes into several groups. In Section
4, we brie°y discuss how ICA is applied to the data in
the present study. We show the results in Section 5.

1 http://cmgm.stanford.edu/pbrown/sporulation/



Discussion follows in Section 6.

2. CLASSIFICATION BY DOMAIN
KNOWLEDGE

Chu et al[3], who thankfully made the data available in
public, has tried to classify genes in their data into sev-
eral groups, using their domain knowledge. To group
the yeast genes according to their sequential induc-
tion patterns during sporulation, Chu et al hand-picked
seven small sets of genes (Table 1), which are represen-
tatives of induction patterns in respective time period
(which are known by previous studies, i.e., based on do-
main knowledge). By averaging expressions (i.e. real-
values) of these genes at di®erent times in each set,
they de¯ned seven model induction patterns over time
(Fig.1). Given extensive experimental studies on yeast
genes, we consider their model induction patterns as a
benchmark, or as `correct' patterns.

Using this model induction pattern, all the other
yeast genes are classi¯ed into one of the seven groups.
Each gene is assigned to a group which shows the high-
est correlation coe±cient between its model induction
pattern and the gene expression data over time. In
addition, genes within each group is ordered by the
magnitude of the correlation coe±cient.

Model pro¯les Representative genes

Metabolic ACS1, PYC1, SIP4
CAT2, YOR100C, CAR1

Early I ZIP1, YDR374C, DMC1
HOP1, IME2

Early II KGD2, AGA2, YPT32
MRD1, SPO16, NAB4
YPR192W

Early-Mid YBL078C, QRI1, PDS1
APC4, KNR4, STU2
YNL013C, EXO1

Middle YSW1, SPR28, SPS2
YLR227C, ORC3, YLL005C
YLL012W

Mid-Late CDC27, DIT2, DIT1
Late SPS100, YKL050C, YMR322C

YOR391C

Table 1. Yeast genes used to de¯ne average
model pro¯les (Chu et al[3])

Fig.1. Model pro¯les obtained by averaging pro-
¯les of representative genes

3. CLASSIFICATION BY PRINCIPAL
COMPONENT ANALYSIS

We ¯rst examine classi¯cation by principal component
analysis (PCA), using the data provided by Chu et
al[3]. PCA is in general a popular tool in analysis
of gene expression data and hence, we chose to com-
pare the classi¯cation by PCA with the classi¯cation
by ICA, which is shown in the next section. In this
section, we ¯rst de¯ne the classi¯cation by PCA and
then shows its results. Since Raychaudhuri et al[6] ap-
plied PCA to the same data (although, for di®erent
purposes), this section partially use their results.

Let us ¯rst denote the matrix of the yeast gene ex-
pression data with rows of 6118 genes and columns of
7 conditions by X, that is, its (i; j)-th element xij rep-
resents the expression of i-th gene under j-th condi-
tion. Then the eigenvectors of the 7 £ 7 covariance
matrix of X de¯ne the principal components of the
gene expression data. Let us suppose that the covari-
ance matrix is diagonalized as ¤ = V tCov(X)V where
¤ = diag(¸1; : : : ; ¸7), then the columns of V are the
principal components. Table 2 shows all the eigenval-
ues ¸i (i = 1; : : : ; 7) and their ratios. Fig.2 shows the
¯rst three principal components PCi (i = 1; 2; 3) corre-
sponding to the largest three eigenvalues ¸i (i = 1; 2; 3).

By examining ratios in Table 2, Raychaudhuri et
al[6] observed that the ¯rst two PCs account for over
90% of the total variability and the ¯rst three do for al-
most 95%, and concluded that the gene expression data
can be summarized in two or three variables. Also they
provided the interpretations of each PC: The ¯rst com-
ponent, PC1 is almost proportional to the variance over
all genes at each sampled time and distinguished genes
by the overall expression levels. The PC2 increases



almost linearly over time and distinguishes genes by
their ¯rst derivatives. The third component PC3 has
concavity, or parabolic nature.

Eigenvalues Ratios

¸1 = 2:29 76.9%
¸2 = 0:40 13.5%
¸3 = 0:13 4.4%
¸4 = 0:06 2.0%
¸5 = 0:04 1.4%
¸6 = 0:03 1.0%
¸7 = 0:03 0.8%

Table 2. Eigenvalues of covariance matrix

Fig.2. The ¯rst three principal components
(PC1, PC2 and PC3, from top to bottom) are
used as model induction patterns in PCA-based
gene classi¯cation.

Thus, the PCs seem to capture some features of
yeast gene expression during sporulation. We can then
use these PCs as model induction patterns and classify
genes to groups, where the groups are de¯ned by PCs
and each gene is classi¯ed into a group of the PC that
shows the highest correlation with the gene expression
data over time. Genes in each group are sorted by
the value of correlation coe±cients. de¯nes a new au-
tomatic gene classi¯cation method. In Section 5, we

examine this results of the classi¯cation by PCA.

4. CLASSIFICATION BY INDEPENDENT
COMPONENT ANALYSIS

PCA is a quite popular tool in gene expression data
analysis, however, it has some limitations, simply be-
cause PCA only takes into account the second-order
statistics and restricts itself to to orthogonal transfor-
mation to obtain principal components. On the other
hand, independent component analysis (ICA) can take
into account higher order statitics and can utilize non-
orthogonal transformation for de-mixing. Hence, it
is worth to examine ICA-based method for automatic
gene classi¯cation.

We apply ICA to the microarray data, using the
following de-mixing,

y = Wx;

where x is a 7-dimensional vector sampled from the
columns of the transposed microarray data matrix Xt.
We use JADE algorithm[2] to obtain the 7 £ 7 de-
mixing matrix W . Fig.3 gives the column plot of the
inverse W ¡1 of the obtained de-mixing matrix. From
the inverted relation x = W ¡1 y, one can realize that
the columns of the inverse of de-mixing matrix rep-
resent how respective separated components re°ect in
the original microarray data. (This is similar to the
columns of the inverse as \scalp map" in the case of
EEG signals de-mixing.) Also the inverse of the de-
mixing matrix obtained by ICA can be regarded as the
counterpart of the matrix V obtained by PCA. We de-
note the columns of W ¡1 by ICi(i = 1; 2; : : : ; 7), for
convenience.

Notably, some model induction patterns in Fig.3,
blindly obtained by ICA, are similar to those in Fig.1,
obtained manually depending on domain knowledge on
yeast genes. For example, IC1 and IC2 in Fig.3 ap-
pear to match well with `Early I' and `Middle' in Fig.1,
respectively.

We then use the columns of the inverse W ¡1 (or
pseudo inverse) of de-mixing matrix as model induc-
tion patterns. Similarly to the previous methods, we
use the correlation coe±cients between a gene expres-
sion data over time and a model induction pattern and
then classify each gene to the model induction pattern
that shows the highest correlation. Again, genes in
each group are sorted by the values of the correlation
coe±cients.



Fig.3. Columns of W ¡1 sorted according to their
norms in descending order

Fig.4. Columns of pseudo inverse of W (IC1, IC2

and IC3, from top to bottom) are used as model
induction patterns in ICA-based gene classi¯ca-
tion.

In the next section, we compare the results of the
PCA-based and ICA-based gene classi¯cation methods.
In this comparison, we use only top three model induc-
tion patterns for simplicity. For this purpose, we also
generated three ICA-generated model induction pat-
terns by a pre-processed cleaned data, which is done
by reconstructing the data by the ¯rst three princi-
pal components. This is to eliminate ill e®ects from
the components with small magnitudes which would
not capture essential information. In this case, the de-

mixing matrix is a 7 £ 3 matrix and the columns of its
3 £ 7 pseudo inverse matrix are used as model induc-
tion patterns. Fig.4 gives the column plot the pseudo
inverse matrix.

5. BLIND GENE CLASSIFICATION

By results in the previous three sections, we have the
following three kinds of model induction patterns: i)
seven manually obtained model induction patterns by
Chu et al[3] (Metabolic, Early I, Early II, Early-Mid,
Middle, Mid-Late and Late), ii) three PCA-generated
model induction patterns (PCi (i = 1; 2; 3)) and iii)
three ICA-generated model induction patterns (ICi (i =
1; 2; 3)). In the following, we classify yeast genes ac-
cording to the three kinds of model induction patterns
and compare the ICA-generated and PCA-generated
induction patterns to the manually obtained model in-
duction patterns, which is a benchmark.

In each model induction pattern of each of the three
methods, the genes are ordered by the value of their
correlation coe±cients. We picked the top 100 (or 200)
genes in each model induction pattern and then exam-
ined how many genes of ICA method (or PCA method)
overlap with the genes of model induction patterns by
hand-tuned method. Table 3 and 4 show the numbers
of the overlaps. (Detailed result of our gene classi¯ca-
tion is available at the author's web site 2 .)

PC1 PC2 PC3 IC1 IC2 IC3

Metabolic 0 0 0 0 0 13
Early I 13 0 0 0 7 0
Early II 2 0 0 0 0 0
Early-Mid 46 0 0 19 0 0
Middle 15 0 0 54 0 0
Mid-Late 0 6 0 7 0 0
Late 0 0 0 0 0 0

Table 3. Numbers of genes in the intersections
(each group consists of 100 genes)

PC1 PC2 PC3 IC1 IC2 IC3

Metabolic 0 0 0 0 20 48
Early I 46 0 0 0 48 3
Early II 24 0 6 0 19 0
Early-Mid 114 0 0 85 0 0
Middle 63 1 0 145 0 0
Mid-Late 0 31 0 48 0 0
Late 0 10 0 0 0 0

Table 4. Numbers of genes in the intersections
(each group consists of 200 genes)

2 http://www.bsp.brain.riken.go.jp/~hori/gene



Regarding the model induction patterns of the hand-
picked method by Chu et al[3] as a benchmark or as
`correct' patterns, we conclude that i) the classi¯ed
groups by ICA-based method have a good match with
the classi¯ed groups using manually obtained model
induction patterns, and ii) ICA-based method classify
yeast genes more distinctively than PCA-based method.

6. CONCLUDING REMARKS

The present study has shown that our ICA-based gene
classi¯cation method can e®ectively classify yeast gene
expressions during sporulation into biologically mean-
ingful groups, taking the manually determined model
induction patterns as a benchmark. As somewhat ex-
pected, we also showed the ICA-based method is more
powerful than the PCA-based method.

Notably, our ICA-based gene classi¯cation does not
require a signi¯cant amount of domain knowledge that
the hand-tuned method such as the one introduced by
Chu et al[3]. In other words, the present study sug-
gests that the ICA-based gene classi¯cation may be a
powerful tool for blind gene classi¯cation. Provided a
rapid increase in use of microarray data, this is a strong
advantage.

Let us discuss limitations and future works of the
present study. First, we tested the data that contains
data samples over time, i.e. the yeast gene expressions
during sporulation. It is interesting to examine the
validity of our method with di®erent types of gene ex-
pression data. Second, there are much to be done to
combine our ICA-generated model induction patterns
with other classi¯cation methods such as hierarchical
gene clustering or tree harvesting. Third, in the present
work, we have used correlation coe±cients between the
model induction patterns and gene expression data to
sort them in each group. This is just for simplicity and
for easiness of comparison with other methods (i.e., the
hand-tuned method by Chu et al[3]). There are other
possible ways of sorting genes. For example, elements
in each separated component (each row of W Xt) can be
used as another mean of sorting genes. It may be more
sensible to use other measures of similarity, like the
Kullback-Leibler divergence. Fourth, rigorously speak-
ing, raw microarray data may not be subject exactly to
the linear mixing model of ICA. We should examine a
more plausible assumption on the mixing, or the con-
ditions that allows us to use linear de-mixing. Finally,
we like to emphasize that the present study indicates
that our ICA-based gene blind classi¯cation is promis-
ing. We need to examine the validity of the method
with more data sets.
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