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Abstract—We previously proposed the use of infor-
mation geometric (IG) measure, as a general method
of analysis, to investigate the interaction of spike fir-
ing. The IG measure is a general method of handling
the probability distribution of random binary vector.
In the present paper, while we give a brief introduction
of the IG measure, we discuss its characteristics in a
plain way. It is hoped that the present paper helps us
understand its utility in a more depth.

1. Introduction

The present paper has two aims; First, we like to
give here a general, albeit briefly, introduction of infor-
mation geometric (IG) measure on spike train analysis
and second, we explain our perspective on this method
of analysis and its implications.

The organization of the present paper is as follows.
Section 2 explains the background and motivation.
Section 3 introduces the IG measure and some of its
essential properties. Then conclusion follows.

2. Background and motivation

One of the central challenges in neuroscience is to
understand what and how information is carried by
a population of neural firing. The simultaneous (or
multi-unit) recording of many neural activities has
been becoming widely available. One obvious advan-
tage of such a technique is to save time in data col-
lection; for example, collecting activities of a hundred
neurons may be done one day by multi-unit recording,
whereas a single unit recording may take a year. Of
course, we should be aware of the different nature of
data collection between these techniques, which we do
not discuss in the present paper but is still worth to be
mentioned. After this is said, we like to ask the ques-
tion; how we can make best of such a massive data
other than merely saving time?

This is the motivation behind our previous work;
we proposed a method of analysis, called informa-
tion geometric (IG) measure, and suggested that this
method allows us to analyze the higher-order interac-
tion among firing of a neural population [2]. An im-

portant characteristic of the IG measure is model-free;
it is a general framework of analyzing a random binary
vector1. In fact, due to its generality, it has been also
applied to DNA microarray data successfully [3]. The
application of the method on a single spike train is also
discussed [4].

3. Information geometric measure

Fig 1 describes the data collection in multi-unit
recording. In each trial, a number of neurons are
recorded simultaneously over a time period. We dis-
cretize the time period by bins so small that there is
only a single spike or no spike in each bin. By assigning
1 and 0 to a spike and no spike in each bin, respec-
tively, each trial is represented by the matrix (Fig 1
right), filled by 0 or 1, whose size may be indicated as
M × L, where M is the number of neurons and L is
the number of bins corresponding to the time period
of a trial.

trials

neurons

time

0 1 0 0 1 0 10 0 1 1 0 0 1 1 1 1

01 1 10 11 0 01 1 11

01 0 1 10 0 0 1 1 11

1 1 1 0

1 1 1 11

01 01 10 0 1 1 11 1 1 1 11 0

Figure 1: Schematic drawing of data collection in
multi-unit recording

Let us put N = M ×L. All possible combination of
0s and 1s, i.e. {0, 1}N , is 2N . Any probability distri-
bution on this N -dimensional random binary vector is
uniquely determined by determining the probabilities
of 2N − 1 events, since the sum of all probabilities of
2N events should be one. Let us write 2N probabilities
of each p(x) by

pi1···iN = Prob {X1 = i1, · · · , XN = iN} ,

1It can be also used as any random binary or even k-discrete
vector
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where ik = 0, 1 and subject to
∑

i1,···,iN
pi1···iN = 1.

The set of all the probability distributions {p(x)}
forms a

(
2N − 1

)
-dimensional manifold SN . We call

any combination of
(
2N − 1

)
components of {pi1···iN }

P -coordinates.
There can be various coordinate systems in SN . The

two coordinate systems, namely η- and θ-coordinate
systems, play an eminent role in information geometric
measure [1, 2]. The η-coordinates is given by by the
expectation parameters,

ηi1i2···ik = E [xi1 · · ·xik] , k = 1, ..., N (1)

which has 2N − 1 components. In other words,

η = (η1, η2, · · · , ηN) = (ηi, ηij , · · · , η1···N) (2)

forms the η-coordinate system in SN , which is linearly
related to {pi1···iN }. This η-coordinates defines m-flat
structure in SN .

On the other hand, p(x) can be exactly expanded
by

log p(x) =
∑

θixi +
∑

i<j

θijxixj +
∑

i<j<k

θijkxixjxk

· · ·+ θ1···nx1 · · ·xN − ψ, (3)

where the indices of θijk, etc. satisfy i < j < k,
etc and ψ is a normalization term, corresponding to
− log p(x1 = x2 = ... = xN = 0). All θijk, etc.,
together have 2N − 1 components and form another
coordinate system, called θ-coordinates,

θ = (θ1, θ2, · · · , θN) = (θi, θij , θijk, · · · , θ12...N ). (4)

and corresponding to e-flat structure in SN . It is easy
to compute any components of θ and for example, we
can get θ1 = log p10,...,0

p00,...,0
.

Information geometry assure us that e-flat and m-
flat manifolds are dually flat: The η-coordinates and
θ-coordinates are dually orthogonal coordinates. The
properties of the dual orthogonal coordinates remark-
ably simplify some apparently complicated issues. Due
to the space limitation, we cannot fully describe them
here (refer to [2] in details) but mention only a few re-
sults. To utilize the property of the dually orthogonal
coordinates, it is convenient to define their partitions,
called a k-cut;

θ = (θk− ; θk+) , η =
(
ηk− ; ηk+

)
(5)

where θk− and ηk− consist of coordinates whose
subindices have no more than k indices, i.e., θk− =
(θ1, θ2, · · · , θk), ηk− = (η1, η2, · · · , ηk), and θk+ and
ηk+ consist of the coordinates whose subindices have
more than k indices, i.e., θk+ = (θk+1, θk+2, · · · , θN ),
ηk+ = (ηk+1, ηk+2, · · · , ηN ). Then let us define the
k-cut mixed coordinate system by

ζk =
(
ηk−; θk+

)
. (6)

Any k-cut mixed coordinate system forms the coordi-
nate system of Sn. A change in the θk+ part preserves
the k-marginals of p(x) (i.e., ηk−), while a change in
the ηk− part preserves the interactions among more
than k variables. These changes are mutually orthog-
onal.

Let us illustrate some utilities of the mixed coor-
dinates by simple examples [2]. Suppose we have an
estimated probability distribution of N neurons in a
test period of an experimental task (e.g. a period of
showing an orientation bar to inspect neurons in early
visual cortex), denoted by p(x; ξ), where ξ represents
the parameters (or the values of coordinate compo-
nents) in a general form and a probability distribution
of our null hypothesis (e.g. a probability of sponta-
neous firing in a control or resting period), p(x; ξ0).
Then, using the k-cut mixed coordinates, we obtain
the decomposition,

D[ξ0 : ξ] = D[ζ0 : ζ ′
k] + D[ζ′

k : ζ], (7)

where ζ0 and ζ are the mixed coordinates, corre-
sponding to ξ0 and ξ, respectively, and we define
ζ′

k = (η0
k−; θk+). In this decomposition, D[ζ0 : ζ̂

′
k]

represents the discrepancy between ξ0 and ξ̂ in the
interactions higher than the k-th order and D[ζ̂

′
k : ζ̂]

equal to and lower than the k-th order. Thus, by this
decomposition, the term representing each discrepancy
can be separated. Furthermore, this decomposition al-
lows us to convert each divergence to p-values of χ2 test
(not shown here). In this manner, we can examine not
only the pairwise interaction against null hypothesis of
any correlated firing (in control period), whereas most
previous studies were concerned with the pairwise in-
teraction against the null hypothesis of independent
firing, but also which higher-order interaction is sta-
tistically significantly different from that of the control
period in a systematic manner.

This type of decomposition also leads to the decom-
position of the mutual information between neural fir-
ing and behavior [2];

I(X, Y ) = Ik+(X, Y ) + Ik−(X, Y ), (8)

where we define Ik+(X, Y ) =
Ep(Y ) [D [ζk(X|y) : ζk(X, y)]], Ik−(X, Y ) =
Ep(Y ) [D [ζk(X, y) : ζk(X)]] and ζk(X, y) =
(ηk−(X|y); θk+(X)). Note that examining if there
exists significant coincident firing is related to but
different from examining if the significant coincident
firing conveys the information of behavior. Thus,
having the decomposition of the mutual information
under the same framework, like above, is useful in
quantitatively relating the test of coincident firing
with the test of behavioural information conveyed.

In [2], we pointed out that although many studies
investigate the correlation of two neuron firing again
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the null hypothesis of independent firing, it is rather
more appropriate to test it again the null hypothesis of
spontaneous correlated firing (e.g. in control period),
or in general, against the null hypothesis of any cor-
related firing. The IG measure easily lets us do so. It
can be also extended to the test of any higher-order in-
teraction (of any number of neurons) against any null
hypothesis. Under the same framework, the IG mea-
sure lets us decompose the information of behavior to
the terms, conveyed by modulation of different order
interactions among neurons.

3.1. Different cases

The IG measure itself is general and can be applied
to any data of N -dimensional random binary vector,
if done appropriately.

0 1 0 1 0 10 0 1 1 0 0 1 1 1 1

1 1 10 11 0 01 1 11

01 0 1 10 0 0 1 1 11

1 1 1 0

1 1 1 11

01 01 10 0 1 1 11 1 1 1 11 0

0 1 0 0 1 0 10 0 1 1 0 1 1 1 1

01 1 1 1 0 01 1 11

01 0 1 1 0 0 1 1 11

1 1 1 0

1 1 1

01 01 10 0 1 1 11 1 1 1 11 0

0 1 0 0 1 0 10 0 1 1 0 0 1 1 1 1

01 0 1 10 0 0 1 1 11 1 1 1 11

01 01 10 0 1 1 11 1 1 1 11 0

A B C

1

0 1

0

01 1 10 11 0 01 1 111 1 1 0

Figure 2: Different ways of creating N -dimensional
random binary vector

Fig 2 shows the several cases in multi-unit record-
ing data. In Fig 2 A, a time bin is chosen and fixed
as the same for all neurons and then we consider the
probability distribution over all neurons at the fixed
bin. This corresponds to let N = M (while setting
L = 1). In [2], we primarily discussed this case only
for presentation’s simplicity (while briefly mentioning
that we can also pick different time bins for differ-
ent neurons as in Fig 2 B). In this case, we still have
N = M . Alternatively, picking a single neuron, we
can let N = L (while setting M = 1) (Fig 2 C) and
this is the case that the N -dimensional binary vector
represents a spike train of a single neuron.

3.2. Generality of the IG measure, experimen-
tal limitation, and different models

Clearly, we can apply the same statistical tools on
the distribution of N -dimensional random binary vec-
tor to all cases (Fig 2 A-C). This is a good news and is
due to the generality of the IG measure. Furthermore,
the IG measure treats probability distribution of N -
dimensional random binary vector most thoroughly,
since it handles the probability distribution with re-
spect to the full, i.e. 2N−1, components of coordinates
in Sn. Thus, in principle, any statistical question on
probability distribution of N -dimensional random bi-
nary vector can be addressed by the IG measure. This
is also a good news. For example, identifying the

probability distribution of neural firing corresponds to
identifying ’a point’ in a (2N − 1)-dimensional proba-
bility space (i.e. Sn).

After these have been said, we must also mention
that we face a severe limitation, once we start applying
the IG measure to multi-unit recording data. That is
the experimental limitation on the number of samples.
Given N -dimensional random binary vector, we have
to deal with the components of the coordinates, whose
number is 2N − 1. Clearly, this number of coordinates
can easily go beyond the currently available number of
samples in most experiments. Then, applying the IG
measure to such a data may look impossible. Is the
IG measure useless in practical data analysis? What
shall we do?

To consider this issue, it is worth first considering
why this becomes the issue in using the IG measure
and also how any other methods of analysis, or differ-
ent models of neural firing (Fig 2 AB) and/or a single
spike train (Fig 2 C), deal with same issue.

0 1 0 0 1 0 10 0 1 1 0 0 1 1 1 1

01 1 10 11 0 01 1 11

01 0 1 10 0 0 1 1 11

1 1 1 0

1 1 1 11

01 01 10 0 1 1 11 1 1 1 11 0

modelprobability space

information geometric measure 

as a common coordinate system

Figure 3: IG measure as a common coordinate system

The IG measure makes it so explicit what the full
probability space is and this is why this becomes an is-
sue. Any method cannot escape from the same issue,
indeed, and must deal with the same issue, because
they deal with the same data, data of N -dimensional
random binary vector. Any methods, or models, are
actually reducing the dimensionality of the probabil-
ity space to search by their assumptions or hypothe-
ses, regardless of whether they are mentioned explic-
itly or not. Most methods/models directly goes to this
point first; each one, explicitly or (often implicitly or
without mentioning), assumes what properties of data
they consider as essential, then inspect some (but not
full, in most cases) properties of data accordingly and
claims itself better, if not best, than others in most of
cases.

Which method/model is better? One advantage of
the IG measure is that it can be used as a common
coordinate system, since it treats the full space in a
systematic manner. It can lay out the common ground
for the comparison of different models or results by
different methods of analysis (Fig 3). Each reduced
search space of different models becomes a subspace in
the full space. Then, any models or any assumptions
are casted under the common framework.

Having a common (and good) coordinate system is
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Figure 4: Raster is the basic data of spike train of a
single neuron

important. To illustrate, consider spike train data of a
single neuron (Fig 4). The raster plot contains all the
information of spike trains, if the single-unit recording
is done to record only spike occurrence, and is a most
basic data format. The raster is then converted to
different formats; the peristimulus histogram (PSTH),
the spike count distribution, the inter spike interval
(ISI) distribution and so on. In other words, for ex-
ample, the spike count distribution is only a partial
information extracted from the raster. It is true that
the spike counts are often of primary interest, how-
ever, it is also true that we may miss some properties,
possibly important, if we only inspect the spike count
distribution in data. The “inverse” problem, recover-
ing the probability distribution of N -dimensional ran-
dom binary vector from the spike count distribution,
is ill-posed.

0 1 0 0 1 0 10 0 1 1 0 0 1 1 1 1

01 1 10 11 0 01 1 11

01 0 1 10 0 0 1 1 11

1 1 1 0

1 1 1 11

01 01 10 0 1 1 11 1 1 1 11 0

model
spike count

neurons

Figure 5: Multi-unit recording and spike count distri-
bution

For example, if we assume the Poisson process as
underlying process and regard the spike count distri-
bution as the Poisson distribution, then we can recover
the underlying process, by using the PSTH as addi-
tional information. The assumption here is so criti-
cal that it significantly reduces the space to search.
Without such an assumption, we cannot recover the
underlying process from the spike count distribution.
Question is if this assumption is correct. Consider an-
other example. If we begin with assuming that all
what matters in firing of neural population is spike

count distribution, our approach becomes as shown in
Fig 5. If this assumption is correct, no worry. If not,
we are destined to make a wrong conclusion. If we like
to examine if this assumption is correct, we must be
able to examine other properties in data.

Thus, we see that assumptions made in each
model/method are critical and then difficult to be ex-
amined, if properties of data are inspected only within
each model/method. The assumptions are important
since they are the statement of what properties of data
are regarded as essential by each model/method. In
order to compare different models/methods, the IG
measure is useful as the common coordinate system
and capable of locating any models/methods in the
full probability space (Fig 3).

On the other hand, any methods, including the IG
measure, must incorporate some assumptions to re-
duce the search space in practice, simply because we
never get the number of samples sufficient for locating
the probability in the full space. Depending upon our
interest, e.g. interaction among neurons (Fig 2 AB)
or single spike train (Fig 2 C), we must take account
of most appropriate assumptions or hypotheses. It is
then important to elucidate what assumptions are re-
quired for data of our interest and what subspace they
occupy in the full probability space. The IG measure
allows us to do so in a transparent way.

4. Conclusion

We have introduced the information geometric (IG)
measure and discussed its nature.
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