
Learning Attentive-Depth Switching while Interacting with an Agent

Chyon Hae Kim, Hiroshi Tsujino, and Hiroyuki Nakahara

Abstract— This paper addresses a learning system design for
a robot based on an extended attention process. We consider
that typical attention that consists of the position/area of a
sight can be extended from the viewpoint of reinforcement
learning (RL) systems. We propose an RL system that is based
on extended attention. The proposed system learns to switch its
attention depth according to the situations around the robot.
We conducted two experiments to validate the proposed system:
a capture task and a navigation task. In the capture task,
the proposed system learned faster than traditional systems
using switching. Q-value analysis confirmed that attention depth
switching was developed in the proposed system. In the naviga-
tion task, the proposed system demonstrated faster learning in
a more realistic environment. This attention switching provides
faster learning for a wider class of RL systems.

I. INTRODUCTION

Learning about human personalities and habits is an im-
portant area in the robotics field, because robots will come
closer to humans in the future, serving in our houses and
offices by utilizing their mobility. In such situations, robots
will need to be able to learn and predict the behaviour of a
human to improve their service.

There are three main requirements for a suitable learning
system.

1) Adaptation to the tasks
2) Adaptation to humans
3) Fast adaptation

The robot’s learning systems should adapt to human-related
tasks, because the objective of a robot in many cases is
to serve humans. Adaptation for humans is also important
because the robots must be able to execute a task without
receiving the required commands from the humans as far as
possible, by estimating the requirement adaptively. Finally,
fast adaptation is required to achieve sufficient performance
in uncertain situations between a human and a robot.

For example, when a robot navigates a patient to a given
position in a hospital, it should consider how to reach the
required position and how to keep the human comfortable
at the same time. This type of navigation requires the robot
to learn the personality and habits of the patient through
interaction. This learning must be sufficiently rapid, because
the robot needs to adapt to the surrounding and changing
environemnt.

Chyon Hae Kim and Hiroshi Tsujino are with Honda Research Institutes
Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama 351-0188, Japan

phone:+81-48-462-5219
E-mail:{tenkai, tsujino}@jp.honda-ri.com
Hiroyuki Nakahara is with Integrated Theoretical Neuroscience RIKEN

Brain Science Institute, 2-1 Hirosawa Wako Saitama, 351-0198, Japan
phone:+81-48-467-9663
E-mail:hn@brain.riken.jp

A. Traditional Systems
Traditionally, reinforcement learning (RL) has been used

to develop task-based learning systems [1], [2], [3]. An RL
system allows robot creators to determine a robot’s task
by using a reward function. This distinguishes this type of
learning system from others.

Multi-agent RL (MARL) [4], sub-category of RL, devel-
ops a relationship between self (robot) and an agent. For
example, Tesauro proposed Hyper-Q based on the framework
of MARL and demonstrated a rock-paper-scissors game [5].
While the agent plays this game with the robot, the robot
must learn the personality and habits of the agent who is
trying to win the game. However, disadvantage of MARL
is that it requires the robot to learn large amount of data,
resulting in slow learning speed because data sampling costs
time for a robot.

In order to improve the speed, in this study, we focus on
attention depth, which is based on extended attention. Typical
studies of attention consider the position and area of a robot
sight. Lucas et al. proposed an RL system that learns how to
switch a robot’s attention. The robot successfully decreased
the entropy while recognizing objects in camera images [6].
Yoshikai et al. demonstrated a robot that imitates a human
while shifting attention by using a learning system [7].

However, we consider that the concept of attention has
been used in a restricted sence and can be extendable from
the viewpoint of RL systems. In this paper, we explain
this extended attention concept and propose an RL system
that is equipped with several layers, which achieve attention
switching in terms of extended attention.

The remainder of this paper is organized as follows,
Section II describes the proposed system, Section III con-
firms the learning speed and attention switching of the
system using a capture task, Section IV demonstrates the
applicability of the system by using a navigation task, Section
V discusses the performance and future development of the
system. Finally, the conclusion is presented in Section VI.

II. PROPOSED SYSTEM

A. Approach
Traditionally, attention has been defined as a robot sight

directed to a certain position or area. In other words, attention
is an observation selection function for a robot. We consider
that the definition of attention can be extended to include
the selection process for the state space of a robot from the
viewpoint of RL.

For example, when a robot focuses its visual attention on
an object, the robot observes information from the object se-
lectively while neglecting other information than that inside

its attention area. Traditionally, the term attention has been
used to refere to this type of process. After observation, the
robot may filter the information to make its action selection
easier. Especially when RL systems are applied, this type of
filtering is required to form a sufficiently small state space
because a large state space results in slow learning and low
generalization of experience. We consider that the role of
this filtering process is very similar to that of the traditional
concept of attention. We have termed this process extended
attention.

Extended attention will reduce the number of data samples
required from RL systems because their learning speed
positively correlates to the size of state space. However,
exact implementation of extended attention is difficult for
robot creators because they do not have sufficient information
to anticipate the exact situations, in which a robot will
interact with a human or an environment after development
and distribution. Therefore, we try to implement extended
attention as a result of a learning process of the robot.

B. Abstract Domain Definition

Before explaining the proposed learning system, we define
the domain abstractly. In this domain, a robot interacts with
an agent using its motion while proceeding with a task. The
robot needs to observe self X , agent Y and environment
Z information. For robotics researchers, considering the
required state space for self X and environment Z informa-
tion is relatively simple than that for agent Y information.
This is because developers know self (robot) X information
readily, and can describe environment Z information by
using physical knowledge. However, agent Y information,
which is dominated by the agent’s thinking is very difficult
to describe in robot systems.

Therefore, mechanical learning to select sufficient state
space for information Y is important, this often cannot be
predetermined by robot creators. In this paper, we introduce
the concept of extended attention to the information Y and
Ẏ .

C. Proposed System

We propose an RL system that learns attention switching
regarding an agent’s information by using competitive learn-
ing. After learning, the proposed system will select whether
to neglect the velocity of agnet Ẏ on the basis of the system’s
observation.

D. System

Figure 1 shows the proposed RL system, which uses two
RL layers that are composed of finite states. The first layer
(Layer1) has a state space (X,Y, Z) that does not include
Ẏ . The second layer (Layer2) has a state space including Ẏ
(X,Y, Ẏ , Z). When Y does not include absolute coordinate
information, the system needs to predict the velocity Ẏ using
an estimator.

We need to design the state space of RL appropriately to
accelerate its learning. A larger state space causes a slower
learning speed because the system requires a larger number

Estimator
)1(),1(−− tatX

)1(−tY

First Layer

Second Layer
)(tY

)(ˆ),(),(tatZtX

)(tY&

1Q

2Q

Q

)(tY

)(tY

),(tY

Fig. 1. Proposed reinforcement learning system
X: robot information. Y : agent information other than velocity. Ẏ : agent’s velocity
information. Z: environment information. a: action performed in the previous time
step. â: action that is considered to be performed.

of data to fix its function approximator. On the other hand,
a smaller state space causes local optima of action selection
learning because the state space has the potential to have
less information to describe the selection rule. However, pre-
determination of size is very difficult for agent information
Y and Ẏ , as described above.

Therefore, we introduce a type of competitive learning
between the layers that selects whether Ẏ (larger state space)
is used or not (smaller state space). We define the states of the
first and second layers as si and sij , respectively. The state
of Layer 2 needs an additional index j because Layer 2 has
a larger number of dimensions than Layer 1. When the state
of Layer 2 is sij , the state of Layer 1 must be si, because
these layers take a common observation from the sensory
input (X,Y, Ẏ , Z), although the state of Layer 1 lacks Ẏ .
We define the Q-values of the first and second layers as
Q1 := Oi(si) and Q2 := Oij(sij), respectively. If we define
the total Q-value of these layers as Q := λ1Q1+λ2Q2, then
the Bellman error formulation is as follows:

E =
1

2

∑
i,j

∑
i′,j′

pijPsij ,si′j′ (rsij ,si′j′

+γQ′(si′j′ , π)− λ1Oi − λ2Oij)
2 (1)

where pij is the probability that Layer 2 takes state sij ,
Psij ,si′j′ is the probability that a robot transits from the state
sij to another state si′j′ using its action selection policy π,
rsij ,si′j′ is rewarded during the transition, and Q′ is the Q-
value of the selected action based on the policy π and the
state si′j′ .

To deduce the update function for each O, we assume the
terms rsij ,si′j′ + γQ′(si′j′ , π) to be the output target value
of the system that is independent of Oi and Oij . Under this
assumption, we apply the steepest descent method.

∆Om = −αλ1
∂E

∂Om
≈ α

∑
j

∑
i′,j′

pmjPsmj ,si′j′ (rsmj ,si′j′

+γQ′(si′j′ , π)− λ1Om − λ2Omj) (2)

∆Omn = −α
∂E

∂Omn
≈ αλ2

∑
i′,j′

pmnPsmn,si′j′ (rsmn,si′j′

+γQ′(si′j′ , π)− λ1Om − λ2Omn) (3)

This method gives these offline update functions. The
online versions of the functions are as follows:

∆Q1 = α1(r + γQ′ − λ1Q1 − λ2Q2) (4)
∆Q2 = α2(r + γQ′ − λ1Q1 − λ2Q2) (5)

These update functions realize a type of competitive
learning. Q1 and Q2 inhibit the increasion of Q2 and Q1

each other because update values ∆Q1 and ∆Q2 consist
of −λ2Q2 and −λ1Q1, respectively. In particular when
λ1 = λ2 = 1, Q1 and Q2 are balancing with equal rates.
To increase Q1 or Q2 with keeping stable, we need to
decrease Q2 or Q1 by the same amount. When we set one
of the αis to 0, the functions work in the same way as
a traditional reinforcement learning, SARSA. In this paper,
we update each Qi by using these online update functions.
Moreover, we use mesh-type function approximators for the
approximation of the Q values and the ϵ-greedy method for
the action selection.

III. CAPTURE TASK

We conducted a capture task to validate the learning speed
and attentive level switch of the proposed system. A robot
that is represented by a half circle captures the centre of the
mass of an agent in this abstracted task (Fig.2).

In general, there are two methods by which a robot can
capture an agent. The first method is to use a feedback
control for the position Y of the agent. This method is
optimal only when the agent does not move or when the
agent moves randomly. The second method is to estimate the
agent’s motion from its position and velocity (Y, Ẏ). When
the agent has some rules in the motion, this method will work
better than the former method, although the robot needs to
learn the rules.

A. Experimental Settings

We set the half circle radius of the robot R = 0.1 [m]. For
the vertical direction, the robot approaches an agent with a
constant velocity v = 0.2 [m/s]. For the horizontal direction,
the robot selects its action among the following three actions:
moving the half circle to the left by the length of ∆ =
0.2 [m], moving the half circle to the right by the length of
∆, and remaining still. The robot gets a reward of 1 or -1
when it succeeds or fails, respectively, to capture the agent.

We implemented a type of randomness and a rule for the
agent. The agent shifts its position p left and right using a
normal random number ϕ(u, σ2) every ∆t seconds.

p(t+∆t) = p(t) + ϕ(u, σ2) (6)

If u and σ2 are both constants, the agent’s motion is
a completely random walk. We then introduce a hidden
rule inside the random walk. When the sign of u changes
periodically (u = u0 or −u0), the agent’s motion is slightly
different from random. There is an inhibited tendency to go
left/right at a given moment. If a robot is able to estimate u,
it might increase its capture rate.

Agent

Robot

The sight of the robot

(a constant range from the center of the robot)

Fig. 2. Simulated capture experiment

The estimation difficulty can be controlled by changing the
parameter σ2. A larger or smaller σ2 increases or decreases
the randomness of the motion, respectively.

The agent’s motion flow is as follows:
{1} Decide the parameters u0 and σ.
{2} Add normal random number ϕ(u, σ2) to p (this process

repeats n times).
{3} Invert the sign of u.
{4} Continue Steps 2 and 3.

We set the initial position of the agent to be just 1 [m]
above the centre position of the robot. The robot continues
to learn for one set (equal to 20,000 trials) using the same
parameters ∆ = 0.2 [m], u = 0.2 [m], σ2 = 0.15 [m2],
∆t = 0.2 [s], and n = 1. At the start of the learning process,
we initialized all Os of Layer1 and Layer2 to zero. We used
an optimistic action selection [3] by adding bias to the Q
value (Q = Q1 +Q2+0.007). We set the learning rate α of
each layer to 0.08.

For the state Y of Layer1, we used the relative position
vector (∆x,∆y) from the mass centre of the robot to the
agent. For the input Ẏ of Layer2, we used the horizontal
absolute velocity of the agent ẏ.

In order to compare the performance, we used two
SARSAs that correspond to the layers. We fixed the param-
eters of the SARSAs to correspond to those layers including
the learning rate, 0.08.

B. Results

1) Success Rate: We performed 100 sets of experiments
for each system. Fig. 3(left) shows a 2,000 trial moving
average of the capture rates for the 100 sets with standard
deviation error bars Fig. 3(right) shows a 200 trial mov-
ing average to show the detail. These graphs show that
the proposed system could achieve a higher success rate
than the traditional systems, SARSA1 and SARSA2, which
correspond to the first and second layers, respectively. The
dotted lines in Fig. 3(left) show reference performances that
represent the best performances of ideal systems. The robot
of Reference 1 does not know the sign of u and follows the
feedback control to y(t). This reference is optimal when u
does not change its sign. The robot of Reference 2 knows
the sign of u and follows the feedback control to y(t) + u.
This reference shows the maximum capture rate when the
robot predicts the agent’s motion completely.

2) Analysis of Attention: In order to analyze the attentive
level of the proposed system, we focused on the domination

0 4000 8000 12000 16000 20000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Trials

S
u

cc
es

s
R

at
e

Proposed system

SARSA1

SARSA2

Reference 1

0.538

Reference 2

0.694

0 4000 8000 12000 16000 20000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Trials

S
u

c
c
e
ss

 R
a
te

Proposed system

SARSA1

SARSA2

Fig. 3. Success rate (left/right side figure shows 2,000/200 moving average)
of the layers. When Layer 1 dominates the action of the
robot, the robot moves on the basis of only input Y because
Layer 1 does not obtain input Ẏ . This means that the
robot’s attentive level is shallow. As mentioned above, in
this attentive level, the robot’s best strategy is to follow y(t)
(Reference 1), because the robot has no way to estimate u
from information Y . When Layer 2 dominates the action of
the robot, the robot moves on the basis of input (y, ẏ). In
such a case, the robot’s attentive level is deep, and the best
strategy is to follow y(t) + u. Therefore, dominance of the
layers is an effective tool to validate the attentive level of
the layers.

We analysed the attention level switch between Y and
(Y, Ẏ) while the robot was performing the task by using
the dominance. We defined dominance of Layer 1, D1, as
follows:

D1 =
∑
ẏ

δa(∆x,∆y,ẏ),a1(∆x,∆y) (7)

where δ is a Kronecker delta, a is an action that the whole
system selects as best one based on Q value, and a1 is an
action that Layer 1 selects as the best one on the basis of the
Q1 value while neglecting Q2. In this definition, when D1

is high or low, the robot’s action is dominated by the first or
second layer, respectively.

The left and right sides of Fig. 4 show the attention level
of the robot on the basis of the dominance definition. Each
coloured pixel of these images shows the dominances of
Layer 1 D1 while the robot learns the capture task. We set
O as the centre position of the robot. In the colour bar at the
top of the images, blue indicates that the dominance of Layer
1 is strong (D1 is high) and red indicates that dominance of
Layer 1 is weak (D1 is low). At an early stage of learning,
Layer 1 dominance was strong in a wide area. This means
that the robot had attention for (∆x,∆y) and ignored the
velocity ẏ of the agent. During the final stage of learning,
dominance of Layer 1 is weak at the centre, on the left,
and on the right. This means that the agent was near the
robot or around the limitation of the sight of the robot, the
robot focused on the motion that includes velocity ẏ. While
the agent was far from the robot, the robot still focused on
(∆x,∆y). Therefore, the final stage dominance shows the
attentive-level switch inside the learning system according
to the related position (∆x,∆y) from the robot to the agent.

IV. NAVIGATION TASK

We applied the proposed system for a navigation task. In
this task, a navigation robot learns how to navigate another
robot to a goal area. In previous studies, several researchers

2010/10/12

1

y

x

o

y

x

o

2010/10/12

1

y

x

o

y

x

o

Fig. 4. Attention during the early stage (left) and that during the last stage
(right)

Fig. 5. Mechanical model (left) and computational model (right)

have attempted such navigation tasks using traditional sys-
tems such as a control system using a potential field [8], [9],
an evolutionary computation system [10], and a classifier
system [11]. Vaughan’s control system gathered a flock of
animals at a point by using a feedback control [8], [9].
However, Vaughan did not consider the implicit rules of the
flock. This is the same as the situation in which soccer robots
do not consider the implicit rules of a soccer ball [12] other
than its physical dynamics.

We consider that this task is suitable for validation of the
proposed learning system because the quantitative perfor-
mance validation is easy and reproducibility is higher than
when a human acts as a navigated agent. We analysed the
proposed system using this task.

We designed the simulation model of the robots from the
hardware model (Fig. 5 right) and designed the environment
(Fig. 6) on the Webots simulator [13]. Table I shows the
specifications of the robots. We used the same model for
both the guiding robot and the guided robot.

A. Guiding Robot

The software system of the guiding robot has three com-
ponents: a pre-processing system, a learning system, and a
behavior-generation system.

1) Pre-processing System: In this system, the information
obtained from the head-mounted camera image and the
encoder is processed, and the result is sent to the learning
system (Table II). From the image obtained by the head-

3[m]

40°°°°

Cage

View from the navigation robot

Fig. 6. Experimental environment

TABLE I
SPECIFICATIONS OF THE GUIDING AND GUIDED ROBOTS

Weight Head 184.7 [g]
Body (front) 370 [g]
Body (back) 300 [g]

Size Body Width 120 [mm]
Length 250 [mm]

Wheels Width 10 [mm]
Radius 40 [mm]

DOF Track Wheels (D.O.F = 2)
Waist Roll (1)
Neck Pitch and Yaw (2)
Jaw Raises and lowers

snout of robot (1)
Devices Camera Field of View 2 radians

Resolution 64×64 pix.
IR Sensor Quantity 4

Placement 30 degrees
from side parallel

Gyroscope (not in the model)

TABLE II
STATE SPACE OF THE LEARNING SYSTEM

Target Information (dimensions) Range
Self (x) Neck yaw (1) [0, 1]
Other agent (y) Horizontal weight center (1) [0, 1] (detected)

Rotation (cosθ, sinθ) (2) −1 (not detected)
Cage (z) Horizontal weight center (1) [0, 1] (detected)

Horizontal corner position (2) −1 (not detected)

mounted camera, the guiding robot extracts the weight
centres of the guided robot, the cage, and the LEDs on
the guided robot using the thresholds of their colours. The
guiding robot then calculates the direction of the guided
robot from the position of the LEDs. In addition, the guiding
robot extracts the vertical edges of the cage by using Hough
transform. The horizontal weight centres of the guided robot
and the cage, the sine and cosine of the direction vector of the
guided robot, and the horizontal positions of the edges of the
cage are normalized to the range of [0,1]. If the objects are
out of view and the guiding robot fails to detect the objects,
−1 is assigned to the value of the information. The angle of
the neck of the guiding robot obtained from the encoder is
also normalized to the range of [0,1].

2) Learning System: We applied the proposed learning
system (Fig. 1) with an estimator that is created through
pre-learning of the robot.

In the capture task, we could calculate the velocity of the
other agent ẏ easily because ẏ was always detectable without
noise. In this guiding task, the calculation of ẏ is difficult
because image processing is not accurate and the positions of
the objects are not always detectable. In such cases, the robot
must learn to obtain an accurate estimator for calculating the
predicted state of the other agent.

We constructed the estimator using an online learning
process that has a mesh type function approximator. Each
cell of the mesh outputs each prediction of ỹ for the
corresponding state of the cell. The estimator calculates an
average from the training data for ỹ, and fixes the output
of each cell to the average. We allowed the guiding robot
to move randomly using its action primitives (described
in the following subsection) around the guided robot in
the experimental environment to update the estimator. This
updating process continued for a simulation time of 10 hours.

We set several rewarding rules for the learning system

TABLE III
ACTION PRIMITIVES

Index Time [s] Motion
A0 1 Stay
A1 1 Move toward the position of the target
A2 2 Turn clockwise around the target
A3 2 Turn counterclockwise around the target
A4 1 Move away from the position of the target
A5 1 Search for the target
A6 5 Move away from the cage
A7 1 Search for the cage

according to the state of the robots. The learning system
rewarded automatically with a reward of 0.1 when the guided
robot and the cage overlapped on the image obtained by the
head-mounted camera of the guiding robot. From this state,
if the guiding robot moved towards the guided robot, the
learning system received a reward of 1. When the guiding
robot successfully completed the guidance and the guiding
robot could confirm this on the image captured by the head-
mounted camera, the learning system received a reward of
10.

3) Action Primitives: We prepared eight action primitives
(Table III). The guiding robot executed one of the primitives
selected by its learning system.

B. Guided Robot

The guided robot moves according to its input from the
infra-red (IR) sensors and the force field in the environment.
The guided robot avoids obstacles in the field and the guiding
robot using its IR-sensors (Table IV). This avoidance has
a higher priority than movements that are according to the
force field.

TABLE IV
COLLISION AVOIDANCE

Which sensors detect the objects Command
Two front sensors Turn left or right at random
Two rear sensors Move forward
Right sensor only Turn left
Left sensor only Turn right

The guided robot follows the force field when nothing
is detected by the IR-sensors. When the guiding robot is
outside the 0.15 [m] radius circle around the guided robot,
the guided robot follows the force field shown in Fig. 7 (left)
and moves to the centre of the field. If the guiding robot is
within the circle, then this force field changes its flow, as
shown in Fig. 7 (right). Fig. 7 (right) shows the force field
when the guiding robot approaches the guided robot from
the downward direction from the figure. Even if the relative
positions of the robots are the same, the guided robot moves
differently on the basis of its position in the field.

C. Results

We compared SARSA1, SARSA2, and the proposed sys-
tem using the same learning parameters as those used in the
capture task. The success rate of the proposed system tended
to be higher than those of the other systems (Fig. 8).

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

Fig. 7. Force field (left) and force field while avoiding the guiding robot
(right)

0 2 4 6 8 10
0

5

10

15

20

25

30

Time [h]

Su
cc

es
s

co
un

t [
1/

h]

SARSA1

SARSA2

Proposed system

Fig. 8. Success rate of the guiding robot simulation

V. DISCUSSION

A. Attentive Level Switching

The capture task analysed the attentive-level switching
of the proposed system. We found that learning speed and
attention have a strong relationship in RL systems.

In an early stage of learning the proposed system used
only one attention. However, by the final stage, the proposed
system switched to two attentions Y and (Y, Ẏ) according to
the observation. This result shows that the proposed system
had learned a type of attentive-level switching. The compar-
ison between the proposed system and SARSAs shows the
effectiveness of the attentive-level switch. The learning of
the proposed system was faster than that of SARSAs.

The proposed system only switched between two types
of attentions, however, the learning speed was dramatically
improved. We need to investigate the number of types of
attentions required to improve the speed.

B. Generalization

The attention depth of the extended attention concept
is a highly general concept. In this paper, we focused on
the velocity of an agent. However, this concept might be
applicable to any RL that has number of choicees for state
space. When we apply the concept to a learning system, we
may need to arrange additional systems such as the estimator
of the proposed system. Further research is required to
develop a general framework to select the additional systems.

C. Validation Method

The validation method for the proposed system requires
improvement. There is a trade-off between analysis ca-
pability and applicability validation. A simple numerical
simulation, the capturing task, allowed us to validate the
attention switch. However, this was not a realistic task. The

navigation task was more realistic, however, this made vali-
dation difficult, because the amount of information required
to analyse was so large. If we introduce a human as a guided
agent, this task will be even more complicated. We, therefore,
need to consider how to satisfy both analysis capability and
applicability.

D. Learning System Topology

This research also showed that the network topology of RL
systems (e.g. layers of the proposed system) is important to
describe attention switching. Therefore, adaptation for the
network topology [14], [15] is important to enhance the
capability of the proposed system.

VI. CONCLUSION

In this paper, we proposed a learning system that learns
the attentive level switch according to the state of agents.
The results of the capture task simulation revealed that the
capture rate of the proposed system was higher than those of
the traditional methods. While learning, the proposed system
learned attentive-level switch. The results of the guiding
task simulation showed a higher success rate than traditional
methods in a more realistic task.

REFERENCES

[1] C. J. C. H. Watkins: ”Learning From Delayed Reward,”Ph.D. thesis
of Cambridge University, (1989).

[2] C. J. C. H. Watkins:”Q-Learning,”Machine Learning, Vol. 8, pp. 279–
292, (1992).

[3] R. S. Sutton and A. G. Barto: ”Reinforcement Learning,”MIT Press,
55 Hayward Street Cambridge, MA 02142–1493 USA, (2000).

[4] E. Yang and D. Gu: ”Multiagent Reinforcement Learning for Multi-
Robot Systems: A Survey,”University of Essex Technical Report,
(2004).

[5] G. Tesauro: ”Extending Q-Learning to General Adaptive Multi-
Agent Systems,”Advances in Neural Information Processing Systems,
(2003).

[6] L. Paletta, G. Fritz, and C. Seifert: ”Reinforcement Learning of
Informative Attention Patterns for Object Recognition,”Proceedings of
IEEE International Conference on Development and Learning, (2005).

[7] T. Yoshikai, N. Otake, and I. Miznuchi: ”Development of an Imitation
Behavior in Humanoid Kenta with Reinforcement Learning Algorithm
Based on the Attention during Imitation,”Proceedings of IEEE/RSJ
International Conference on intelligent Robots and Systems, (2004).

[8] R. Vaughan, N. Sumpter, A. Frost, and S. Cameron: ”Robot Sheepdog
Project Achieves Automatic Flock Control,”Proc. of the International
Conference on Simulation of Adaptive Behavior, (1998).

[9] R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and S. Cameron: ”
Experiments in Automatic Flock Control,”Robotics and Autonomous
Systems, Vol. 31, pp. 109–117, (2000).

[10] A. C. Schultz, J. J. Grefenstette, and W. Adams: ”RoboShepherd:
Learning a Complex Behavior,”In Proceedings of the Robots and
Learning Workshop, pp. 105–113, (1996).

[11] O. Sigaud and P. Gérard:”Using Classifier Systems as Adaptive Expert
Systems for Control,”Lecture Notes in Computer Science, pp. 138–
157, (2000).

[12] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda: ”Purposive
Behavior Acquisition for a Real Robot by Vision-based Reinforcement
Learning,”Machine Learning, Vol. 23, pp.279–303, (1996).

[13] http://www.cyberbotics.com/
[14] K. O. Stanley and R. Miikkulainen, “Efficient Reinforcement Learning

Through Evolving Neural Network Topologies,” In Proceedings of the
Genetic and Evolutionary Computation Conference, (2002).

[15] C. H. Kim, T. Ogata, and S. Sugano: “Reinforcement Signal Propa-
gation Algorithm for Logic Circuit”, Journal of Robotics and Mecha-
tronics, (2008).

