
Decoupling MDPs Step by Step from a POMDP

Chyon Hae Kim1, Hiroshi Tsujino1, Hiroyuki Nakahara2

1 Honda Research Institutes Japan Co.,Ltd.
{tenkai,tsujino}@jp.honda-ri.com

2 Integrated Theoretical Neuroscience RIKEN Brain Science Institute
hn@brain.riken.jp

Abstract. This paper addresses the problem, how an artificial agent
decouples a partially observable Markov decision process (POMDP) to
several Markov decision processes (MDPs) according to the dimensional
hierarchy of the MDPs. We propose multi-layered reinforcement learning
(MLRL) that selectively uses each layer to learn each MDP to reduce the
learning cost. The MLRL separately learned two MDPs step by step in
a simulated capture task. Also, the MLRL learned faster than SARSAs
in the capture task and a simulated guiding task.

1 Introduction

This paper addresses the problem, how an agent learns for Markov decision
processes (MDPs) that are inside a partially observable Markov decision process
(POMDP).

Traditionally, many kinds of reinforcement learning (RL) systems for MDP
and POMDP have been researched. MDP is a special case of POMDP, and
there are many techniques to solve MDPs (e.g. SARSA and Q-learning are very
famous formulations) [C89,C92,RA00]. On the other hand, there is no technique
to solve general POMDPs, since POMDPs are often computationally intractable
[LM98,Ke00].

To adapt to general POMDPs, an agent requires these capabilities.

1. Utilization for temporal sequence
2. Decision making that is based on statistical state models.

However, utilization for temporal sequence increases the complexity of learning,
and statistical state models require a lot of observation data. In many practical
scene, these problems result in large computational cost.

To relax the cost, we discuss how to find learnable MDPs inside a POMDP.
If an RL system is able to decouple the MDPs from a POMDP, the system
does not need to learn the MDPs using POMDP frameworks as traditional RL
systems do. After the MDPs are learned, the remained POMDP will not require
large cost to be learned. We propose a multi-layered RL formulation to decouple
the MDPs step by step.

The structure of this paper is as follows: In Section 2, we formulate the
proposed RL. In Section 3, we describe the experimental systems for a capture
task and a guiding task. In Section 4, we show the results of the experiments. In
Section 5, we mention our considerations. In Section 6, we conclude this paper.



2 Algorithm

2.1 Definition of a POMDP

POMDP frameworks are defined by a tuple (S,A,O, T,Ω,R), where S is a set
of states, A is a set of actions, O is a set of observations, T is a set of conditional
transition probabilities, Ω is a set of conditional observation probabilities, R :
S × A → R is the reward function. An agent that reaches the state s′ ∈ S
from the state s ∈ S using an action a ∈ A observes o ∈ O with probability
Ω(o|s′, a). In general, observation o is composed of partial observations yis o :=
{y1, y2, · · · , yn}.

2.2 The least combination of elements to describe transition

In POMDP framework, we assume that state transitions follow MDP. The tran-
sition probability T is defined as follows:

T := T (s′|s, a) (1)

Usually, the state transition is not observed directly, since observation o has
smaller number of elements than s = {y1, y2, · · · , yn, ŷ1, ŷ2, · · · , ŷn}. However, in
some cases, s is redundant to describe transition probability T . In these cases,
the state transition is observable. For example, in the case that T (s′|s, a) =
T (s′|o, a), elements ŷ1, ŷ2, · · · , ŷn are redundant, and o has sufficient kinds of
elements to observe the state transition. Generally, each transition T has the
least combination C of elements to be described. If the combination C is inside
the elements of observation o while a transition, the transition is inside an MDP
(sub-task) that is inside a POMDP (whole task). So, there is possibility that
RL system adapts to the MDPs while learning a POMDP problem. This kind
of adaptation will help the system to solve the POMDP, since each MDP is
tractable using traditional RL framework. However, we need to consider the
hierarchy of MDPs to divide MDPs from a POMDP.

2.3 Approach

To divide a POMDP into several MDPs, which are computationally tractable,
and the a remained POMDP, we need to consider the hierarchy of observable
information of an agent. We propose a step by step decoupling method that uses
an RL system, which equips with multi-layers, based on the consideration. Each
layer of the multi-layers is related to one of the hierarchy of MDPs.

In many cases, a POMDP includes many MDPs Ms as sub-tasks of the
POMDP. These MDPs are categorized by the combination C of partial observa-
tions yis. We define an MDP that requires only C to be learned as MC = M{···}.
Among them, the most simple MDPs are M{yi}s that include only one element
yi. An RL system RL1 that learns the POMDP while assuming the POMDP
as M{yi} may converge to local optima. However, another RL system RL2 that



learns the same POMDP while assuming the POMDP as M{yi,yj} may converge
to a better solution than RL1 (or the best solution of the POMDP. See [JS98]
for the case when SARSA converges to an optimal policy of POMDP problems).
Therefore, to find MDPs inside a POMDP, an RL system should select the best
combination C of partial observations yis or the best M for each sub-task inside
a POMDP. We formulated an RL system for the problem, and examined the
system to select Cs.

In our approach, an artificial agent decouples the POMDP to a simple MDP
(e.g. M{yi}) and the remained POMDP (M̄{yi}). To realize the first decoupling,
we use the first layer that corresponds to M{yi}. This layer is able to learn only
for M{yi}. To proceed the decoupling, the agent decouples M̄{yi} into an MDP of
second level M{yi,yj} and the remained POMDP (M̄{yi,yj}) again. This layer is
also able to learn only for M{yi,yj}. This way, the proposed RL system decouples
a POMDP into multi-layered MDPs.

2.4 Formulation

To explain the formulation of the proposed method, we show the formulation of
a two layered RL at first, and extend that for a multi-layered RL.

Two Layered RL The two layered RL is composed of two RLs. The first
layer has an RL, RL1, that consists of SARSA or Q-learning. While an agent
observes os according to its actions as, and receives rewards r. RL1 learns the
relationship between yis, as, rs using its partial observations yis. This means
that RL1 learns Q values for each state action pair Q1(yi, a). If a POMDP has
a sub-problem, MDP M{yi}, inside that, this RL system that has observation yi
is a good solution for the sub-problem.

As in the first layer, the second layer has an RL system, RL2, that also
consists of SARSA or Q-learning. RL2 learns Q values for each state action pair
Q2(yi, yj , a).

If an agent utilizes these two RL systems appropriately while learning a
POMDP that includes M{yi} and M{yi,yj} as sub-tasks, the agent will reduce
the learning cost, since RL1 and RL2 are good solutions for sub-problems M{yi},
M{yi,yj}.

We established the way to combine these two RL systems into an RL system.
To utilize these systems, RL1 and RL2, we need these considerations.

1. How the whole RL system calculates the Q value from Q1 and Q2.

2. How the whole RL system learns Q values.

For the first problem, we use the following linear coupling formulation

Q =
2∑

k=1

wkQk + wremQrem (2)



where wk is a weight for Qk, wrest is a weight for Qrest, Qrest is a Q value
for an RL system that learns for a POMDP M̄{yi,yj} that is the rest of M{yi}
and M{yi,yj}. When we do not use an RL system for the remained POMDP,
wremQrem is 0. In general, an agent inside a POMDP has to consider sub-
tasks of hierarchical MDPs. When an agent takes a state S(yi, yj) in a MDP
M{yi,yj}, the agent takes a state S(yi) in another MDP M{yi} simultaneously.
So, transitions in these MDPs proceed at the same time. Therefore, the agent
needs to consider the weight w of these tasks inside M{yi,yj} and M{yi} to sum
up the benefit of the sub-tasks.

For the second problem, if we assume the use of finite states for each layer,
we are able to derive the learning formulations of the whole system as follows.
When RL1 observes yi, RL2 observes (yi, yj). We define the Q value of RL1 as
Q1 := Q1(yi) and define the Q value of RL2 as Q2 := Q2(yi, yj). When the RL
system is in a sub-task M{yi,yj}, we formulate the error as follows:

E =
1

2

∑
yi,yj

∑
y′
i
,y′

j

pπyi,yj
Pπ
yi,yj ,y′

i
,y′

j
(ryi,yj ,y′

i
,y′

j

+γQ′(y′i, y
′
j , π)− w1Q1(yi)− w2Q2(yi, yj))

2 (3)

where pπyi,yj
is the probability where RL2 observes (yi, yj), Pπ

yi,yj ,y′
i
,y′

j
is the

transition probability when an agent transits from the observation (yi, yj) to
another observation (y′i, y

′
j) using an action selection policy π, ryi,yj ,y′

i
,y′

j
is the

given reward in the transition, and Q′ is the Q value of the selected action, which
is based on a policy π and selected based on the next observation (y′i, y

′
j) when

we apply SARSA type update.

We deduce update functions of each (yi, yj) from the error E using the steep-
est descent method, based on the two assumptions that the terms ryi,yj ,y′

i
,y′

j
+

γQ′(y′i, y
′
j , a

′) to be the output targets of the learning system that are indepen-
dent of yi and yj , and the symbols pπyi,yj

and Pπ
yi,yj ,y′

i
,y′

j
are independent of Qns.

Steepest descent method derives a formulation that is consistent to traditional
RL theory as we mention later.

∆Q1(ym) = −α
∂E

∂Q1(ym)
≈ αw1

∑
yj

∑
y′
i
,y′

j

pπym,yj
Pπ
ym,yj ,y′

i
,y′

j

(rym,yj ,y′
i
,y′

j
γQ′(y′i, y

′
j , π)− w1Q1(ym)− w2Q2(ym, yj)) (4)

∆Q2(ym, yn) = −α
∂E

∂Q2(ym, yn)
≈ αw2

∑
y′
i
,y′

j

pπym,yn
Pπ
ym,yn,y′

i
,y′

j

(rym,yn,y′
i
,y′

j
+ γQ′(y′i, y

′
j , π)− w1Q1(ym)− w2Q2(ym, yn)) (5)

We show the obtained online update functions which are derived from these
update functions.



∆Q1 = α1(r + γQ′ − w1Q1 − w2Q2) (6)

∆Q2 = α2(r + γQ′ − w1Q1 − w2Q2) (7)

When we change the formulations as follows, the formulations show that RL1

and RL2 learn separately for TD Error − wnQn as SARSAs. This means that
each RL, RL1 or RL2, learns the rest of TD error that was learned by another
RL.

∆Q1 = α1((r + γQ′ − w1Q1)− w2Q2) (8)

∆Q2 = α2((r + γQ′ − w2Q2)− w1Q1) (9)

In a special case when w1 = 1 and w2 = 0, This formulation is the

Q = Q1 (10)

∆Q1 = α1(r + γQ′ −Q1) (11)

This result is consistent to traditional theory for SARSAs that consider single
MDP. When the weight for the M{yi,yj}, w2, is 0, this multi-layered system
negledts M{yi,yj}. In this case, this system does not consider the POMDP as
mixture of M{yi} and M{yi,yj}, but M{yi}. So, above mentioned formulation,
which is consistent to SARSA, is reasonable to calculate reward estimation.

Multi-Layered RL We show the formulations of a multi-layered RL that was
deduced the same as the two layered RL.

Q =

n∑
k=0

wkQk (12)

∆Qi = αi((r + γQ′ − wiQi)−Σk ̸=iwkQk) (13)

3 Experimental Systems

We conducted two experiments, a capture experiment and a guiding experiment,
to validate the proposed RL system.

3.1 Capture Experiment

We established a PC simulation. In this simulation, a learner (abstract robot)
having a radius R captured the center mass of an agent in a half circle (Fig.1).



Robot The robot was equipped with the two layered proposed RL system.
The robot observes the vertical relative position of the agent x, the horizontal
relative position of the agent y, and the horizontal absolute velocity of the agent
ẏ. We set (x, y) for the first layer’s observation. The observation is related to an
MDP M{x,y}. We set (x, y, ẏ) for the second layer’s observation. The observation
is related to another MDP M{x,y,ẏ}. We divided the input space into 100 × 4
(horizontal direction × vertical direction). For the vertical direction, the robot
approaches an agent with a constant velocity v. For the horizontal direction, the
robot selects its action among three actions: moving the half circle to the left
by the length of ∆, moving the half circle to the right by the length of ∆, and
remaining current position. The robot gets a reward value, 1, when it captures
the agent. If the robot fails that, the robot gets a punishment value, -1.

Settings for the Agent We set two rules for the movement of the agent to
make a POMDP environment for the robot. The first rule is that the agent moves
left and right randomly using a normal random number ϕ(u, σ2). If the robot
learns ϕ, the robot improves capture performance. The second rule is that the
agent changes the sign of u periodically. We noticed that the robot was not able
to observe the sign of u, which decides the state of the agent. Therefore, the sign
of u makes a POMDP environment for the robot.

We are able to control the difficulty to guess the rule of the agent by changing
the parameter σ2. This capturing task is easy when σ2 is small, but is difficult
when σ2 is large. We show the flow of agent’s motion as follows:

1. Decide the parameters of normal random numbers u and σ.

2. Add normal random number ϕ(u, σ2) to the horizontal position of the agent
y.

3. Invert the sign of u.

4. Continue Steps 2 and 3.

Parameters We set the initial position of the agent to be just above the position
of the center of the robot. The robot continued to learn for one set (= 20,000
trials) using the same parameters ∆ = 0.2, u = 0.2, σ2 = 0.15, and R = 0.1. At
the start of the learning process, we initialized all Qs of the first layer and the
second layer to zero. In order to obtain the initial bias of the Q value, we added
a bias directly to the total Q (Q = Q1+Q2+0.007). This bias makes optimistic
selections of the actions [RA00]. We set the learning rate of each layer to 0.08.

Experiment We performed 100 experiments for each of the systems, SARSA1,
SARSA2, and the proposed RL system. The capture rate values, which was
obtained from the 100 experiments, were again averaged as a 2,000 trial moving
average.



Agent

Robot

The sight of the robot
(a constant range from the center of the robot)

Fig. 1. Simulated capture experiment

Fig. 2. Mechanical model (left) and computational model (right)

3.2 Guiding Task

We established another numerical experiment to examine the applicability of the
proposed RL system for a more complicated POMDP environment. In this ex-
periment, the learner (guiding robot) learns how to guide another robot (guided
robot) to a goal. In previous studies, several researchers attempted such guiding
tasks using traditional systems, such as a control system using a potential field
[RN98,RN00], an evolutionary computation system [AJ96], and a classifier sys-
tem [OP00]. The control system used by Vaughan gathered a flock of animals at
a point using a feedback control [RN98,RN00]. This task is very useful to evalu-
ate the proposed system, since experimenter is able to evaluate the effectiveness
of RL systems from the speed to achieve the task, and the guided robot makes
POMDP environment.

We modeled the hardware of the robots (Fig. 2 right) and the experimental
environment (Fig. 3) on the Webots simulator [URL], which is based on a phys-
ical simulation engine called open dynamics engine (ODE). The specifications of
the robots are shown in Table 1. We used the same model for both robots, the
guiding robot and the guided robot.



3[m]

40°°°°

Cage

View from the guiding robot 

Fig. 3. Experimental environment

The guiding robot (black one) guides the guided robot (white one) into a cage. While the guidance,
the guiding robot observes the guided robot using its head mount camera. The guided robot, which
was equipped with two LEDs, shows the direction of its body to the guiding robot. The image from
the camera is shown at the bottom of this figure.

Table 1. Specifications of the guiding and guided robots

Weight Head 184.7 [g]
Body (front) 370 [g]
Body (back) 300 [g]

Size Body Width 120 [mm]
Length 250 [mm]

Wheels Width 10 [mm]
Radius 40 [mm]

DOF Track Wheels (D.O.F = 2)
Waist Roll (1)
Neck Pitch and Yaw (2)
Jaw Raises and lowers

snout of robot (1)
Devices Camera Field of View 2 radians

Resolution 128×32 pix.
IR Sensor Quantity 4

Placement 30 degrees
from side parallel

Gyroscope (not in the model)

Guiding Robot The software system of the guiding robot has three compo-
nents, a pre-processing system, a learning system, and a behavior generation
system.

[Pre-processing system]: This system process the information, which is ob-
tained from the head-mounted camera image. The result is sent to the learning
system (Table 2). From the image obtained by the head-mounted camera, the
guiding robot extracts the weight centers of the guided robot, the cage, and the
LEDs on the guided robot using the thresholds of their colors. The guiding robot
then calculates the direction of the guided robot from the position of the LEDs.
In addition, the guiding robot extracts the vertical edges of the cage using the
Hough transform. The system normalized the horizontal weight centers of the
guided robot and the cage, the sine and cosine of the direction vector of the
guided robot, and the horizontal positions of the edges of the cage, to the range



Table 2. Observation of the learning system

Target Information (dimension) Range

Self (x) Neck yaw (1) [−1, 1]
Other agent (y) Horizontal weight center (1) [0, 1] (detected)

Rotation (cosθ, sinθ) (2) −1 (not detected)
Cage (z) Horizontal weight center (1) [0, 1] (detected)

Horizontal corner position (2) −1 (not detected)

of [0,1]. If the objects are out of view and the guiding robot fails to detect the
objects, −1 is assigned to the value of the information. The angle of the guiding
robot’s neck , which is obtained from the encoder, is also normalized to the range
of [0,1].

[Learning system] We applied the proposed two layered RL system with a pre-
dictor. The predictor predicts the velocity of the guided robot. We constructed
the predictor, which has a mesh type function approximator, using an online
learning process of the guiding robot. We set each cell of the mesh to output
each prediction of ỹ for the corresponding observation of the robot. The predic-
tor calculates an average value from the training data for ỹ, and fixes the output
of each cell to the value. We let the guiding robot move randomly using its
action primitives (see the following subsection) around the guided robot in the
experimental environment. Simultaneously, the predictor of the guiding robot
was updated. We continued this update for 10 hours of the simulation time.

We set several rewards according to the state of the robots. The guiding robot
rewarded its reinforcement learning system automatically with a reward of 0.1
when the guided robot and the cage overlapped on the image, which is obtained
by the head-mounted camera of the guiding robot. From this state, if the guiding
robot moved toward the guided robot, the learning system received a reward of
1. When the guiding robot successfully completed the guidance and the guiding
robot confirmed the success by the head-mounted camera, the learning system
received a reward of 10.

Action primitives We prepared eight action primitives (Table 3). The guiding
robot executed one of the primitives that was selected by its learning system.
Each action costs each time interval ∆t. So, we used γ′ instead of constant γ.

γ′ = γ∆t (14)

Guided robot The guided robot moves according to its input from the infra-
red sensors (IR-sensors) and the force field that is set in the environment. The
guided robot avoids obstacles and the guiding robot using its IR-sensors (Table
4). This avoidance has higher priority than movement according to the force
field. So, while avoidance, the guided robot neglects the force field.



Table 3. Action primitives

Index Time interval ∆t [s] Motion

A0 1 Stay
A1 1 Move toward the position of the guided robot
A2 2 Turn clockwise around the guided robot
A3 2 Turn counterclockwise around the guided robot
A4 1 Move away from the position of the guided robot
A5 1 Search for the guided robot
A6 5 Move away from the cage
A7 1 Search for the cage

Table 4. Collision Avoidance

Which sensors detect the objects Command

Two front sensors Turn left or right at random

Two rear sensors Move forward

Right sensor only Turn left

Left sensor only Turn right

The guided robot follows the force field when nothing is detected by the IR-
sensors. When the guiding robot is out of the 0.15 [m] radius from the center of
the guided robot, the guided robot follows the force field shown in Fig. 4 (left)
and moves toward the center of the field. If the guiding robot is in the circle,
then this force field changes its flow, as shown in Fig. 4 (right). Fig. 4 (right)
shows the force field when the guiding robot approaches the guided robot from
the downward direction. Even if the relative positions of the robots are the same,
the guided robot moves differently based on its absolute position in the field.

4 Results

4.1 Capture Task

The obtained capture rate is shown with the standard deviation error bars in
Fig. 5. In addition, a 200 trial moving average is shown in Fig. 6 in order to
provide detail. Based on the graphs shown in Figs. 5 and 6, we confirmed that
the proposed system could achieve a higher success rate than the conventional
systems, SARSA1 and SARSA2. The dotted lines in Fig. 5 show references for the
performance when the robot performs optimal actions. The robot of Reference
1 does not observe the sign of u and follows the feedback control toward y(t).
Therefore, Reference 1 shows the maximum capture rate when the robot follows
M{x,y}. The robot of Reference 2 observes the sign of u and follows the feedback
control to y(t)+u. Reference 2 shows the maximum capture rate when the robot
follows M{x,y,ẏ}.



-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

Fig. 4. Force field (left) and force field while avoiding the guiding robot (right)

In order to analyze the role of each layer of the proposed system, we focused
on the domination of each layer. When the first layer dominates the action of
the robot, the robot moves based only on input (x, y) because the first layer does
not get input ẏ. In this case, the robot is following an MDP M{x,y}. When the
second layer dominates the action of the robot, the robot moves based on input
(x, y, ẏ). In this case, the robot is following another MDP M{x,y,ẏ}. We analyzed
the dominations of the layers. We define the action selection of the first layer,
a1(x, y, ẏ), as whole system’s action when Q2 is neglected (Q2 = 0, Q = Q1).
If the action selection of the first layer, a1, is equal to the action selection of
the whole system, a, then the first layer is the dominant controller of the whole
system. Therefore, the whole system is using M{x,y} to capture the agent in this
case. On the other hand, if a1(x, y, ẏ) is modified by the second layer, a ̸= a1,
then the first layer is no longer the dominant controller of the system. In this
case, the whole system may use M{x,y,ẏ} to decide its action. To confirm the use
of M{x,y,ẏ}, we introduced Reference 1 of Fig. 5. We define dominance of the
first layer, D1, as follows:

D1 =
∑
ẏ

δa(x,y,ẏ),a1(x,y) (15)

where δ is a Kronecker delta. We show the dominance of the robot in Fig. 7. We
confirmed that the robot Learned to switch the dominance.

4.2 Guiding Task

We compared SARSA1, SARSA2, and the proposed system using the same learn-
ing parameters as those used in the capture task. The success rate of the proposed
system tended to be higher than those of the other systems (Fig. 8).



0 4000 8000 12000 16000 20000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Trials

Su
cc

es
s R

at
e

 

 

Proposed system
SARSA1
SARSA2

Reference 1
0.538

Reference 2
0.694

Fig. 5. Capture rate (2,000 trial moving average)

0 4000 8000 12000 16000 20000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Trials

Su
cc

es
s R

at
e

 

 

Proposed system
SARSA1
SARSA2

Fig. 6. Capture rate (200 trial moving average)

5 Discussion

5.1 Decoupling MDPs

At the early stage of the capture experiment, the first layer of the proposed RL
dominated the action of the robot. So, the robot utilized M{x,y} at the early
stage. At the last stage, the dominance of the first layer was weak when the
agent was near the robot or was almost out of the sight of the robot. The robot
utilizedM{x,y} andM{x,y,ẏ} according to the situation. Generally, when a human
captures an agent like the robot, the human needs the position y of the agent.
If the agent is slow and far from us, y is sufficient information to approach the
agent. However, if the agent is quick and near to the human, the human may
need the speed ẏ of the agent. We consider that the robot switched of M{x,y}
and M{x,y,ẏ} appropriately according to the situation.



2010/10/12

1

y

x

o

y

x

o

2010/10/12

1

y

x

o

y

x

o

Fig. 7. Attention during the early stage (left) and attention during the last stage (right)

These images show the dominances of the first layer while the robot learns the capture task. We set
O as the center position of the robot. Each colored pixel shows the dominance of the first layer. In
the color bar at the top of the images, blue indicates that dominance of the first layer is strong (D1

is high), and red indicates that dominance of the first layer is weak (D1 is low). At the early stage
of learning, the first layer dominated a wide area. This means that the robot focuses on M{x,y} and
ignores the velocity ẏ of the agent. During the final stage of learning, dominance of the first layer is
weak at the center, on the left side, and on the right side. While the agent was far from the robot
(top of the figure), the robot focused on M{x,y}. However, when the agent was near the robot or
around the limitation of the sight of the robot, the robot focused on the motion of the agent ẏ and
M{x,y,ẏ}. The proposed learning system realized learning for the switch of two MDPs.

From the analysis for the robot’s learning, M{x,y} was decoupled from the
POMDP at first, and then M{x,y,ẏ} was decoupled. We consider that the reason
why M{x,y} was learned faster than M{x,y,ẏ} is that M{x,y,ẏ} was more difficult
problem, since it includes one more dimension than M{x,y}.

We consider that the learning process of the robot was step by step as follows.
The robot that learned M{x,y} followed a sub-optimal policy π{x,y} at the early
stage of learning. The robot searched around π{x,y} using ϵ-Greedy search to
improve the policy. In some observations, the robot found that M{x,y,ẏ} was
more suitable to represent the problem. Then, the robot learned π{x,y,ẏ} during
the observations. We may accelerate this learning process using A* search or
other kind of model predictive searches, since ϵ-Greedy search is not the best
one. However, to utilize model predictive searches, learning system has to make
some model of the environment and/or agents while learning Q-values.

5.2 Consideration for a Traditional Theory

Pendrith et al. investigated the conditions for policy stability in non-Markov
decision processes. Pendrith et al. mentioned that the TD style of credit assign-
ment method is not guaranteed to have equilibrium points [MM98]. We agree on
their consideration. However, in the case when a POMDP includes several MDPs
Ms, the TD style of credit assignment method may have equilibrium points of
the sub-problem M .



0 2 4 6 8 10
0

5

10

15

20

25

30

Time [h]

Su
cc

es
s c

ou
nt

 [1
/h

]

 

 

SARSA1
SARSA2
Proposed system

Fig. 8. Success rate of the guiding robot simulation

6 Conclusion

In this paper, we proposed multi-layered RL (MLRL) formulations that decouple
a partially observable Markov decision process (POMDP) to several Markov
decision processes (MDPs) step by step according to the dimensional hierarchy
of the MDPs. From the results of the experiments, we confirmed that a two
layered RL that is based on the proposed MLRL formulations decoupled two
MDPs, M{x,y} and M{x,y,ẏ}, step by step. Also, the MLRL got better success
rate and success count than SARSAs in the experiments.

References

[C89] C. J. C. H. Watkins:“Learning From Delayed Reward,” Ph.D. thesis of Cam-
bridge University, (1989).

[C92] C. J. C. H. Watkins:“Q-Learning,” Machine Learning, Vol. 8, pp. 279-292,
(1992).

[RA00] Richard S. Sutton and Andrew G. Barto: “Reinforcement Learning,” MIT
Press, 55 Hayward Street Cambridge, MA 02142-1493 USA, (2000).

[LM98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra :“Plan-
ning and Acting in Partially Observable Stochastic Domains,” ARTIFICIAL
INTELLIGENCE, (1998).

[Ke00] Kevin P.Murphy:“A Survey of POMDP Solution Techniques,” Techni-
cal reports/ informal notes of the author, http://www.cs.ubc.ca/ mur-
phyk/mypapers.html, (2000).

[JS98] John Loch and Satinder Singh:“Using Eligibility Traces to Find the Best Mem-
oryless Policy in Partially Observable Markov Decision Processes,” In Proceed-
ings of International Conference on Machine Learning, (1998).

[MM98] Mark D. Pendrith and Michael J. McGarity:“An Analisis of Direct Reinforce-
ment Learning in non-Markovian Domains,” in Proceedings of the International
Conference on Machine Learning, (1998).



[CT08] Chyon Hae Kim, Tetsuya Ogata, and Shigeki Sugano: “Reinforcement Signal
Propagation Algorithm for Logic Circuit,” Journal of Robotics and Mechatron-
ics, (2008).

[ED04] Erfu Yang and Dongbing Gu: “Multiagent Reinforcement Learning for Multi-
Robot Systems: A Survey,” University of Essex Technical Report, (2004).

[Ge03] Gerald Tesauro: “Extending Q-Learning to General Adaptive Multi-Agent Sys-
tems,” Advances in Neural Information Processing Systems, (2003).

[PG93] Peter Dayan and Geoffrey E. Hinton: “Feudal Reinforcement Learning,” Ad-
vances in Neural Information Processing Systems, (1993).

[Mo91] Morgan Kaufmann: “Variable Resolution Dynamic Programming: Efficiently
Learning Action Maps in Multivariate Real-valued State-spaces,” In Proceed-
ings of the International Conference of Machine Learning, (1991).

[RA01] Remi Munos and Andrew Moore: “Variable Resolution Discretization in Op-
timal Control,” Machine Learning, (2001).

[Ri96] Richard S. Sutton: “Generalization in Reinforcement Learning: Successful Ex-
amples Using Sparse Coarse Coding,” Advances in Neural Information Pro-
cessing Systems, (1996).

[Ha06] Hajime Kimura: “Reinforcement Learning in Multi-Dimensional State-Action
Space using Random Tiling and Gibbs Sampling,” Transaction of the Society
of Instrument and Control Engineers, (2006) (in Japanese).

[MR98] Marco Wiering, Rafa L Salustowicz, and Jürgen Schmidhuber: “CMAC Mod-
els Learn to Play Soccer,” In Proceedings of the International Conference on
Artificial Neural Networks, (1998).

[RN98] Richard Vaughan, Neil Sumpter, Andy Frost, and Stephen Cameron: “Robot
Sheepdog Project Achieves Automatic Flock Control,” Proc. of the Interna-
tional Conference on Simulation of Adaptive Behavior, (1998).

[RN00] Richard Vaughan, Neil Sumpter, Jane Henderson, Andy Frost, and Stephen
Cameron: “Experiments in Automatic Flock Control,” Robotics and Au-
tonomous Systems, Vol. 31, pp. 109-117, (2000).

[AJ96] Alan C. Schultz, John J. Grefenstette, and William Adams: “RoboShepherd:
Learning a Complex Behavior,” In Proceedings of the Robots and Learning
Workshop, pp.105-113, (1996).

[OP00] Olivier Sigaud and Pierre Gérard: “Using Classifier Systems as Adaptive Ex-
pert Systems for Control,” Lecture Notes in Computer Science, pp. 138-157,
(2000).

[MS96] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda: “Pur-
posive Behavior Acquisition for a Real Robot by Vision-based Reinforcement
Learning,” Machine Learning, Vol. 23, pp. 279-303, (1996).

[URL] http://www.cyberbotics.com/


