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ABSTRACT

The basal ganglia (BG) have been hypothesized to perform reinforcement learning by use of reinforcement
signals provided by dopamine neurons. It is well known that there exist multiple BG-thalamocortical
loops, but their functions are poorly understood. Here, we propose a computational model of how differ-
ent BG loops are employed in visuomotor sequence learning using different representations of sequence.
The central idea of the model is that a visuomotor sequence is easier to learn in spatial representation (e.g.
visual coordinates) but is easier to control in body-based representation (e.g. joint angle coordinates).
The results of simulations of the model replicated both behavioral and neurophysiological findings in
recent experimental studies using ”2x5 task”.
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1 INTRODUCTION

Schultz and his colleagues showed in their
experiments [15] that the response tuning of
dopamine (DA) neurons in the substantia nigra
pars compacta (SNc¢) in the basal ganglia (BG)
shifts from primary reward to conditioned stim-
uli that predict reward as the conditioning es-
tablishes. This fact has led to a hypothesis that
a specific form of reinforcement learning (RL),
temporal difference (TD) learning [2], occurs in
the BG with TD error of reward prediction pro-
vided by DA neurons as the reinforcement signal
(e.g. [3,6,14]). This hypothesis provides a com-
putational basis for investigating the BG func-
tion for sequential motor control, which has been
suggested in studies on brain lesions and neu-

ronal recordings.

The BG-thalamocortical circuit is one of the
major cortico-subcortical circuits for motor con-
trol, with the other being the cerebellocortical
circuit. A striking feature of the BG circuit
is its separate, closed loop organization. The
BG receives projections from almost the entire
cerebral cortex but each part of BG projects
to specific area of the frontal cortex. At least
four BG loops have been identified, including
motor, oculomotor and dorsolateral prefrontal
loops [1]. Functions of some of these loops have
been proposed, but it is very poorly understood
how these BG loops work together in sequential

motor control tasks.

In recent experiments of sequential arm reach-
ing task called “2x5 task” [5], Hikosaka and his
colleagues have found that different parts of the
BG and the frontal cortex are involved differen-
tially in acquisition and execution of sequential
movement [10,12]. Motivated by their results,
we propose a computational model of how dif-
ferent BG-cortical loops are involved in differ-
ent stages of learning of sequential movement.
The key idea is that a visuomotor sequence like
that in the 2x5 task is easier to learn in spa-
tial representation (e.g. visual coordinates) but

is easier to control in body-based representa-

tion (e.g. joint angle coordinates) [13]. Specifi-
cally, we propose that the dorsolateral prefrontal
(DLPF) loop learns a sequence in spatial rep-
resentation and the supplementary motor area
loop learns a sequence in body-based represen-
tation. Both loops learn concurrently using the
reinforcement signal carried by DA neurons, but
relative ease of learning and effectiveness in con-
trol causes the differential involvement of these
two loops. Simulation of the proposed model
replicated both behavioral and neurophysiolog-

ical findings of the 2x5 task experiments.

2 2x5 TASK AND ITS FIND-
ING

Figure 1 shows an example of the sequence of
events in a single trial of the 2x5 task. When
the animal pressed the home key at the start
of a trial, two out of the 16 LED buttons were
turned on simultaneously, which is called a ’set’
of stimulus. The animal had to press the illumi-
nated buttons in a predetermined order, which
he had to find out by trial-and-error. If success-
ful, another pair of LEDs, the second set, was il-
luminated which the monkey had to press again
in a predetermined order. A fixed sequence of
5 sets, called a "hyperset,” was presented in a
trial. When the animal pressed a wrong but-
ton, all LED buttons were illuminated briefly
with an unpleasant beep sound, and the trial
was aborted without any reward. The animal
then had to start over a new trial by pressing
the home key. After each successful set, the an-
imal was given a liquid reward.

The same hyperset was used throughout a
block’” of experiments until completing a cer-
tain number of successful trials (criterion). On
each day during a training period, the monkey
performed several blocks of trials with differ-
ent hypersets. Some hypersets were used ev-
ery day, called ’learned’ hypersets, and others
were randomly generated and used only once,

called 'new’ hypersets. Order of presentation of
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Figure 1: Procedure of 2x5 task with an example
of a hyperset . To complete a trial, a monkey
has to press 10 buttons (2 buttons x 5 sets) in a

correct (predetermined) order.

learned and new hypersets are randomized ev-
eryday.

Learning in 2x5 tasks is measured by the
decrease in the number of trials to criterion
and/or the decrease in the performance time.
Hikosaka et al. [5] observed both short-term
learning and long-term learning. Short-term
learning is indicated by improved performance
during a block of experiment and long-term
learning is indicated by improved performance

across days ( See Figure 2).

Functional differentiation was observed in
blockade experiment by muscimol injection be-
tween anterior BG (caudate head) and posterior
BG (putamen) [10], as well as the presupplemen-
tary motor area (pre-SMA) and the supplemen-
tary motor area (SMA) [12]. Number of error
trials to criterion was significantly increased by
blockade of the anterior BG or the pre-SMA for
new hypersets but not for learned ones. Num-
ber of error trials to criterion was significantly
increased by blockade of the posterior BG for
learned hypersets but not for new ones. Block-
ade of the SMA affected both learned and new
ones, but only mildly. In brief, these lines of
experimental evidence suggest that the anterior
BG and the pre-SMA is more involved in early
acquisition process of sequences, and that the
posterior BG and, possibly, the SMA is more in-
volved in maintenance and retrieval of acquired

sequential memory.
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Figure 2: Experimental result of learning a hy-
perset across days. The change in the number of
completed sets (ordinate) across trials (abscissa)
is compared among the 1st day (top), the 3rd
day (middle) and the 30th day (bottom). Taken
from Hikosaka et al. [5]

3 HYPOTHESIS ON MULTI-
PLE REPRESENTATIONS
IN THE BASAL GANGLIA
LOOPS

In visuomotor task such as visually-guided
reaching, problems in inverse kinematics and in-
verse dynamics must be solved to reach a tar-
get based on visual information [7]. We propose
that it is easier to learn a visuomotor sequence
in visual coordinates particularly when the se-
quence is learned by trial-and-error, whereas it
is faster and easier to execute the sequence in
body-based coordinates once it is acquired. We
further propose that it is advantageous to have
multiple learning processes with different speeds
concurrently. A quick acquisition of a sequence
in visual coordinates would help the animals
solve new problems that they encounter in ev-
eryday life; a slow acquisition of a sequence in
body coordinates would help the animals store
the memory of the frequently-used sequence ro-

bustly and retrieve it quickly. Thus, it is plausi-
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Figure 3: Hypothesized scheme of the basal ganglia-thalamocortical loops for sequential motor control.

ble to consider from a computational viewpoint
that a sequence in visual coordinates is more
suitable for early acquisition stage, whereas a
sequence in body-based coordinates is more suit-
able for execution with robust maintenance and

quick retrieval of its memory.

The dorsolateral prefrontal loop: the
projection from DLPF to the BG is primarily
to anterior striatum, including head of the cau-
date nuclei (CD) and and the rostral putamen.
The DLPF is well known to be involved in vi-
suospatial memory and is considered to play a
role in control and planning of sequential move-
ments [4]. Posterior parietal cortex that is con-
nected with the DLPF also projects to the dor-
solateral head of the CD [1].
facts, it is likely that the DLPF loop, including
the DLPF and the anterior striatum, engages

Based on these

computation in visual coordinates (Figure 3).

The motor loop: in motor loop, most of
the projections to the BG originate from the
cortical motor areas, among which the SMA
is of particular interest, and principally termi-
nate in the posterior striatum (the bulk of puta-
men) [1]. The SMA is well connected with other
motor cortical areas and has been known long as
involved in sequential movements, particularly

internally-generated complex ones [17]. Thus,

the motor loop, including the SMA and the
posterior striatum, may engage computation in
body-based coordinates (Figure 3).

It is noteworthy that not the SMA but the
pre-SMA is connected with the DLPF [17]. The
pre-SMA has the projections to the anterior
striatum. Hence, the pre-SMA is heavily inter-
acted with the DLPF loop. It is also experimen-
tally shown that the pre-SMA is generally more
activated in the period after receiving sensory
inputs and before starting movements [9,17].

We hypothesize that the DLPF loop, per-
haps together with the pre-SMA, learns the se-
quence using visual coordinates. The DLPF
loop, hence, is more critical in early acquisi-
tion stage of sequences. In contrast, the mo-
tor loop learns the sequence using body-based
coordinates. The motor loop, hence, is more in-
volved in execution of well-learned sequences. A
unique feature of our model is that both loops
concurrently learn sequences based on reinforce-

ment signal provided by DA neurons (Figure 3).

4 SIMULATION ON 2x5
TASK

In order to test the behavior of a model based

on our hypothesis, we built a neural network
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Figure 4: Diagram of the proposed model in context of the 2x5 task

of 2x5 task learning. The specific questions
we asked were whether the model would have
the short-term and long-term learning of per-
formance and whether the model could repli-
cate the results of blockade experiments for the

DLPF loop.

4.1 Network Architecture

Figure 4 illustrates the overall structure of
the network model, which consisted of the vi-
sual network (DLPF-BG loop), the motor net-
work (SMA-BG loop), the critic network (DA
system), and inverse kinematics modules.

Both the visual and motor networks had the
same structure and had an output layer and a
context layer, each corresponding to the BG and
the cortex. First, the state y; of the output
layer was updated by the softmax function of
the weighted sum of the input u; and the con-
text ; with a tuning parameter for sharpness
of the softmax, denoted by (.

sit) = S whui(0 +wles) (1)

exp[(si(t)]

Yi(t) = =————— 2
O T esplCail 0] 2
Then, one of the output units was stochasti-

cally set as z(t) = 1 with a probability

Prob(z;(t) = 1) = y(1). (3)

The context layer was updated, with a time con-

stant, 7, by the following equation.
1
it +1) = 2i(t) + —(zi(t) —2i(t))  (4)

The weight matrices w! and w® were updated
by a Hebbian rule, weighted by the reinforce-

ment signal #(¢), as defined below;
wh(t+1) = wh(t) + n'i(O)z(tu (1) (5)

wii(t+ 1) = wii(t) + 9 H)z(z(t)  (6)

Initially, the input weights were set by an iden-
tity matrix so that the default behavior is to
press one of the lit buttons.

In the visual network, the state was encoded
by the 16 units corresponding to the positions of
16 buttons in the Cartesian space. The input u"
to the visual network was a 16 dimensional vec-
tor of 0 and 1 encoding whether the correspond-
ing buttons were lit. Its output 2V represented
the button to be pressed, or the movement tar-
get in the visual space.

In the motor network, state was encoded by a
population vector of joint angles. Fach unit had

a Gaussian softmax activation function

ajw):exp[—éz(ez;g}) NG

=1

bi(6) = % (8)



where 8! and #? denote shoulder and elbow an-
gles and 0; denotes the preferred joint angle for
the j-th unit.

An inverse kinematic model, which was de-
rived analytically from the geometry of the arm,
was used to transform the visual representation
into corresponding motor representation. In the
normal operation, the input to the motor net-
work was a sum of two activation vectors, one
calculated from the current visual input and the
other from the output of the visual network.

The critic network provides the estimated
value function given the current state, or the
current sensory input, denoted by wf'. Its en-
coding is the same as the encoding of the state

in the visual network. The estimated value of a
state, P(t), is defined by

P(t) = Sjwiult +f (9)

R
i
for the critic. Using this estimated value func-

where w! and b are the weight matrix and bias
tion, the reinforcement signal, or TD error, 7(t),

is computed by
Mt)=r(t)+yP(t+1)— P(t) (10)

The critic weight matrix, w’, and bias, b%, is

updated by use of TD error as defined below:
wl(t+ 1) = wfi(t) + pfi)ul (11

bt + 1) = T (1) + P i(1) (12)

Thus, note that we used TD(0) learning in sim-
ulation we report below for sake of simplicity
and that the overall architecture of the network

above is based on actor-critic scheme [2].

4.2 Simulation Setup

We let the model learn 2 learned hypersets
and 1 new hyperset per a simulated day, ap-
proximately keeping ratio between learned and
new hypersets in experiment. Simulation is run
for 10 days to train the model networks. Learn-

ing process during this period is examined to
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Figure 5: Simulation result of learning a hyper-
set across days. The change in the number of
completed sets (ordinate) across trials (abscissa)
is compared among the 1st day (top), the 2nd
day (middle) and the 10th day (bottom).

test whether the model exhibits different learn-
ing levels. Then, using the trained network pa-
rameters, we tested the performance of the net-
work for learned and new hypersets in case of the
blockade of the DLPF loop, or the visual net-
work. In simulation, the blockade of the visual
network was realized by inhibiting input from

the visual network to the motor network.

4.3 Results
4.3.1 Different learning levels

Hikosaka et al. [5] indicated short-term learn-
ing by improved performance during a block and
long-term learning by improved performance
across days. It is clear in Figure 6 (right) that
the model makes more errors in the first half
of total trials than in the second half, in par-
ticular for the 1st and 2nd days. This indicates
short-term learning (See also Figure 5). Figure 6
(left) shows that the model improved its per-
formance for learned hypersets across days par-
ticularly for first few days, indicating long-term

learning as observed in the experiments (See also
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Figure 6: Performance of the proposed model:
(left) example of learning a learned hyperset
across days by the model. The number of suc-
cessful trials is plotted against the total number
of trials for the 1st, 2nd, and 10th days. (right)
the averaged performance for learned hypersets
across 10 days. The mean number of trials to

criterion is plotted across days.

Figure 5) [5].

4.3.2 Blockade of the anterior basal gan-
glia and the presupplementary mo-

tor area

It is observed that the performance for the
learned hyperset was not deteriorated by the
blockade of the visual network (Table 1), sim-
ilarly to the results of the blockade experiments
in the 2x5 task [10,12]. In the present network
architecture, it was observed in training period
that the network could not learn some types of
new hypersets at all and the same phenomena
was sometimes observed in the blockade condi-
tion as well, which will be discussed in the next

section.

Table 1: Results on the blockade of visual net-
work: number of trials to criterion for learned

hypersets

| NORMAL BLOCKADE
Learned | 11.4(£1.07) 11.7(£0.95)

5 DISCUSSION

We have hypothesized that the BG contribute
to sequential motor control based on RI with
multiple representations. The DLPF loop uses
visual coordinates and contributes to learning
sequences in early stage. The motor loop uses
body-based coordinates and provides robustness
with the sequential memory once acquired, even
though the motor loop learns them slowly. The
results of the model based on this hypothesis re-
sembled some of experimental results in the 2x5
task: different levels of learning at behavior level
and functional differentiation at neurophysiolog-
ical level.

As noted above, it was observed in the present
simulation that acquired sequential memory
severely interfered learning for some types of
new hypersets in training period as well as in
blockade condition. This is probably because,
in the present architecture, the output from the
visual network is forwarded only as an input to
the motor network so that the output from the
visual network cannot directly influence on hand
movements. We suggest that the present archi-
tecture should be extended to include explicit
mechanism to let the output from the visual net-
work directly influence on producing a final out-
put and, for this purpose, to weight, or gate,
outputs from both of the visual and motor net-
works. The resent study on neural activities in
the pre-SMA suggests that such mechanism may
exist and that the pre-SMA may be a part of
it [11,16]. This point is currently investigated.
In addition, the functions of the cerebellum was
not explicitly addressed in the present study,

however, there are experimental results on the



cerebellum in the 2x5 task, indicating that the
dentate nucleus is involved in maintenance of se-
quential memory [8]. Integrating the functions
of the cerebellum into the proposed hypothesis

is a fruitful future research.
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