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Abstract

This document summarizes the examples that illuminate the merits and ap-
plicability of the method proposed in (Nakahara and Amari, accepted), using
artificially simulated data as well as experimental data from the prefrontal and
dorsal extrastriate visual cortices of monkeys (Anderson et al., 1999). Some
examples are the same as in (Nakahara and Amari, accepted), while new exam-

ples, particularly including experimental data and the case of auto-correlation,
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are included. Thus, this document should be read as a companion of (Nakahara

and Amari, accepted).

1 Examples

Here, we show our method using artificial and experimental data. The experimental
data is from multi-unit recording data collected simultaneously from the prefrontal

and dorsal extrastriate visual cortices of monkeys (Anderson et al., 1999).

1.1 Example 1: Firing of two neurons

We first demonstrate our approach in the case of two neurons, using the artificial spike

data in Figs 1-3 and the experimental data in Fig 4.

1.1.1 Coincident firing

In this simulation, we aim to demonstrate a relation between correlation coefficient
(COR) and 0, and hypothesis testing under different null hypotheses. Figure 1 A & B
gives the mean firing frequency of two neurons and their correlation coefficients (COR;
the N-JPSTH), respectively (see the legend for spike generation). The period (a) is
assumed as the ‘control’ period. The neural firing in the control period presumably
indicates the resting level activity, which was set to have a very weak correlation
here. The firing is almost independent in both periods (b) and (c), whereas it is not
independent in the period (d), whose COR is larger than that of the period (a).
Figure 1 C shows f3, a quantity in our measure to indicate the pairwise interac-
tion. At first glance, the time-course of 63 may look similar to the COR. By a careful

inspection, however, they are different (e.g., the relative magnitudes between the pe-
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riod (a) and (c) are different for COR and @). This is simply because (71,72, 63) and
(11, m2, COR) form different coordinate systems, although both 63 and COR represent
the correlational component.

The coordinate system (7,79, 03) is dually orthogonal so that we can utilize this
property. The Kullback-Leibler (KL) divergence is used to measure discrepancy be-
tween two probability distributions, one distribution to be examined and the other
to be of the null hypothesis. Using the orthogonality of 85 with (n;,79), we can de-
compose the KL divergence into two terms, one representing the discrepancy in the
correlational component and the other the discrepancy in the mean firing. We call the
former ‘the KL divergence in correlation’ below for convenience.

We first examine the KL divergence in correlation against the null hypothesis of
independent firing (i.e. 3 = 0), which is the probability distribution with the same
marginals of the examined probability but with the independent firing. This KL
divergence, denoted by KL1, is indicated by the solid line in Fig 1 D. Compared with
03, the KL1 takes into account the metric in the probability space. The overall time-
course of the KL1 becomes similar to the COR. This is because the plane defined by
03 = 0 is the same as the plane defined by COR = 0. In Fig 1 D, we also indicate
by the dashed line the corresponding p-value, derived from the x?(1) distribution. If
the p-value reaches 0.95 in Fig 1 D, for example, it is significant with p < 0.05. We
observe that the period (d) is significant in Fig 1 D.

We now turn to examine the KL divergence in correlation against the null hypoth-
esis of the averaged activity (including both averaged mean firing rates and averaged
coincident firing) in the control period. In Fig 1 E, this KL divergence in correlation,
denoted by KL2(1), is indicated by the solid line, while the corresponding p-value,
derived from x?(1), is indicated by the dashed line. In Fig 1 E, the period (d) becomes
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no longer significant under this null hypothesis. The period (c) is now clearly signif-
icant, whereas the period (b) is barely significant, although 63 is the same between
the two periods (Fig 1 C). This is because the mean firing rates are different between
the periods (b, c) and the Fisher information metric takes the geometrical structure
into account, not only the degree of the coincident firing (f5) but also the marginal
probability (i.e. the mean firing rates).

A comparison between Figs 1 D & E illustrates a simple fact that what should be
considered as a significant event depends on what is taken as the null hypothesis. In
Fig 1 E, where the p-value is from x?(1) formulation, the underlying assumption is
that the averaged activity in control period, which is estimated from data in practice,
is regarded as a true average activity in control period (see (Nakahara and Amari,
accepted) for details). When we are interested in comparing significances between two
null hypotheses of independent firing and of the averaged activity in control period,
we suggest that the comparison of p-values from x?(1) is informative, as in Fig 1 D &
E.

In contrast, since we estimate the average activity in control period from data
in practice, a more proper and more conservative hypothesis testing under the null
hypothesis of averaged activity in control period is to use a different formulation of
likelihood ratio test. This results in using the p-value associated with x*(2) (see
(Nakahara and Amari, accepted) for details). In Fig 1 F, we indicate by the solid
line the KL2 (2), the KL divergence in the correlation that corresponds to this x?(2)
formulation. The dashed line indicates the p-value, now from x2(2). We can observe
that the p-value in Fig 1 F gives a more conservative estimate, compared with the
p-value in Fig 1 E.

Here, we simply remark that the values of the n-coordinates are provided for all
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examples using artificial data. The n-coordinates can be easily converted to the P-
coordinates that is used to generate sampled data, by which we estimated #-coordinates
in figures, and given the P-coordinates, it is simple to compute true f values. In all
examples of artificial data, the estimated € values reasonably match with the true ones

(e.g. Fig 8 C).

1.1.2 Mutual information between firing and behavior

Figure 2 shows the decomposition of mutual information (MI) between firing and
behavior, using artificial data. We assumed only two choices for the behavior, denoted
by sl and s2. Figure 2 A & B shows the mean firing frequency with respect to sl
and s2, respectively. The mean firing of both neurons is the same between sl and s2
in the period (a), which was assumed as the ‘control’ period. In the periods (b, c),
assumed as ‘test’ periods, for simplicity, we have set the mean firing of the two neurons
as somewhat ‘mirror image’ between sl and s2. The mean firing of each neuron stays
the same in the test periods. Notably, however, the mean coincident firing increases
in the period (c) only when s2 is given (the period (c) in Fig 2 B).

In Fig 2 C, we show the (total) MI between firing and behavior and its decom-
position. The total MI (the solid line in Fig 2 C) exists in the periods (b, c). Its
magnitude is larger in the period (c¢) than in the period (b), although the mean firing
of each neuron stays the same in both periods. This is because the coincident firing is
modulated by the behavioral choices only in the period (c). This observation can be
directly examined by looking into the decomposed MIs (see the figure legend). In brief,
we observe that the increase in the total MI in the period (c) comes almost exclusively
from the part of the MI by the modulation of the coincident firing (indicated by the
dashed dot line in Fig 2 C).
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1.1.3 Auto-correlation and cross-correlation

Figures 1 & 2 illustrated applications of the information-geometric measure to the
neural firing, which changes over time. The same method can be applied to examine
the auto-correlation and the cross-correlation of the neural firing (Toyama et al., 1981a;
Toyama et al., 1981b; Eckhorn et al., 1988; Gray et al., 1989; Engel et al., 1991; Ghose
and Freeman, 1992; Villa and Fuster, 1992; Nelson et al., 1992; Nicolelis et al., 1995;
Kreiter and Singer, 1996; Nowak et al., 1999; Castelo-Branco et al., 2000; Donoghue
et al., 1998). We demonstrate the method with the auto-correlation here, while we
only note that it can be done similarly with the cross-correlation. In examining the
auto-correlation (and/or cross-correlation), one important issue is which of the peaks
and /or valleys are significant (Aertsen and Gerstein, 1985; Brody, 1999b; Brody, 1999a;
Bar-Gad et al., 2001). The information-geometric measure is relevant in this issue,
since it can take into account any non-zero correlated level as the null hypothesis.

In Fig 3 A, the mean firing of a single neuron is plotted over time in both control
period (from 0 to 300 ms) and test period (300 - 600 ms). In Fig 3 B, auto-correlations
in the former and the latter periods were given by bashed and solid lines, respectively.
In Fig 3 B, we observe different peaks and valleys between the two periods. Our
question is what peaks and volleys in the test (latter) period are significant, compared
with the control (former) period. This can be done similarly to the example in Fig 1.
We provided the corresponding 65 in Fig 3 C. Using these values and correspondings
n1, M2 (not shown), we can compute the x? test and in Fig 3 D, we show the p-values
of x%(2) test. We simply note that not all but only some peaks (and valleys) become
significant (p < 0.05). Finally we note that any other null hypothesis, for example,
that of independent firing and also previously proposed techniques, e.g., several types

of shuffling procedures in auto-correlation (as in Fig 3 B), can be also reformulated in
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our method, although not shown here.

1.1.4 Experimental data

Figure 4 shows an example of an application of our method to two neurons experi-
mentally recorded from the prefrontal cortex (Anderson et al., 1999) (see the legend
for the task description). The mean firings over all trials and with respect to stim-
ulus in sample period are shown in Fig 4 A & B, respectively. The coincident firing
just reaches the significance level after the target goes on (‘ton’) (Fig 4 C), where it
is measured by p—value (in x?(2)) against the null hypothesis of the averaged activ-
ity in the control period. After the target on, that is, appearance of four stimuli, a
monkey has to make a saccade towards the stimuli appeared in the sample period in
a trial. Hence, the significant coincident firing after ‘ton’ possibly reflects both the
stimulus-selection-related activity and the saccade-related activity.

In Fig 4 D, the MI between firing and behavior (stimulus in the sample period) is
indicated by the thick solid line. We note that the MI has the peak after the sample on
but is not large after the target on. In other words, while the coincident firing reaches
statistical significant level after the target on, it carries no, or a little if any, information
of the sample stimulus. Furthermore, in Fig 4 D, the (total) MI is decomposed into
the two information, one conveyed by the mean firing rate modulation (indicated by
the solid line, which stays nearly the same as the total MI in the figure) and the
other conveyed by the coincident firing modulation (indicated by the dotted line). We
observe that the total MI is almost the same as the former MI, while the latter MI is
nearly zero during a whole trial.

To be sure, we remark that the two neurons shown as an example here are purely

chosen for illustrative purpose, so we do not consider the example as indicative of any
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typical interaction in the prefrontal cortex.

1.2 Example 2: Firing of three neurons

Here, we demonstrate the case of three neurons, first using artificial data in Figs 5, 6

and then experimental data in Fig 7.

1.2.1 Inspection of triplewise interaction

Figure 5 A gives n = (n,,m,,M3), where the firing is assumed as homogeneous for
simplicity. The period (a) is assumed as the control period. Figure 5 B shows COR.
The COR in the control period is almost zero, while the CORs in the periods (b ¢)
are almost the same as each other, both being different from zero. Yet, when we are
more careful in looking into the interaction, using 6,; (Fig. 5 C) and 6,93 (Fig. 5 D),
we can find that the nature of the interaction is largely different between the periods
(b) and (c).

The triplewise interaction, 6,93, shown in Fig. 5 D, is nearly zero in the periods (a,
b). Hence, 6;; in Fig. 5 C indicates the purely pairwise correlation in these periods.
On the other hand, since ;53 is not zero in the period (c), 6;; in this period does not
represent the purely pairwise correlation any more, although it is still correct to say
that the pairwise correlation is different between the periods (b, ¢) by simply observing
that 0;;s are different in the two periods. The fact that 653 is not zero in the period
(c) indicates that the purely triplewise interaction exists in this period (c), where 6,93
is negative so that the triplewise interaction is negative.

We can make the above observations more quantitative. In Fig. 5 E, the p-value,
derived from x?(2), is to measure the triplewise interaction against the null hypothesis

of the activity in the control period. Here we used the decomposition of k-cut = 2
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that separate the triplewise interaction from other orders, which take the mean firing
rates and the pairwise interaction together (see (Nakahara and Amari, accepted) for
details). We observe that the triplewise coincident firing becomes significant only in
the period (c).

Figure 5 F indicates the p-value from x2(8), which is to measure the triplewise
and pairwise interaction together. Here we used the decomposition of k-cut = 1 that
separate the mean firing rates (1st-order) from other orders, which take the pairwise
and triplewise interactions together (see (Nakahara and Amari, accepted) for details).

We can see that both periods (b, ¢) now become significant.

1.2.2 Mutual information between behavior and firing

Figure 6 shows the decomposition of the MI between firing and behavior, using artificial
data. In each of two stimulus conditions, denoted by sl and s2, the neuron firing is
assumed to be homogeneous for simplicity. Figure 6 A & B shows the mean frequency
of single neuron firing, of pairwise firing, and of triplewise firing with respect to s1 and
s2, respectively. The period (a) was assumed as the ‘control’ period, while the periods
(b-d) were assumed as ‘test’ periods. For s2, the mean frequency is the same over
all periods. For s1, compared with the period (a), only the mean frequency of single
neuron firing is different in the period (b); only the mean frequency of pairwise firing
is different in the period (c); only the mean frequency of triplewise firing is different
in the period (d).

The total MI is shown by the solid line in Figs 6 C & D, while the decomposed
MIs by k—cut= 2 and = 1 are shown in Figs 6 C & D, respectively. In the period
(b), Fig 6 D indicates that most of behavioral information is carried by modulation

of single neuron firing (dashed line in the figure), although some information is also
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carried by modulation of the other orders together (dotted line) (see the legend). By
inspection of the period (b) in Fig 6 C, we can further observe that the behavioral
information is mostly carried by modulation of taking single neuron firing and pairwise
firing together (dashed line, which is almost the same as solid line, i.e. the total MI)
but is not really carried by triplewise firing (dotted line).

We can inspect the periods (c, d) in a similar manner. In brief, Figs 6 C & D
together indicate that most behavioral information is carried by modulation of taking
pairwise and triplewise firing together in the period (c) and is carried by modulation

of triplewise firing in the period (d).

1.2.3 Experimental data

Figure 7 shows an example, using three neurons of real experimental data recorded
from the prefrontal cortex (Anderson et al., 1999). To detect a significant triplewise
coincident firing, three p-values are shown in Fig. 7 C. One is against the null hypoth-
esis of independent firing, derived from x?(1) distribution, indicated by dotted line. It
indicates the significant coincident firing in the delay period (from soff to ton in the
figure) under this null hypothesis. The other two p-values against the null hypothesis
of the averaged activity in the control period, one from x?(1) and the other from x?(2)
(see (Nakahara and Amari, accepted) for details), are indicated by solid and dashed
lines, respectively. Under this null hypothesis, the significant triplewise coincident fir-
ing occurs after the target on (‘ton’), when measured by the p-value from x?(1). Thus,
when we compare the two different null hypotheses, we conclude that the observed
significant coincident firing is completely different. When measured by the one from
x%(2), which gives a more conservative test, the firing, detected as significant by x2(1)

under the latter null hypothesis, becomes not significant. Rigorously speaking, then,
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we may say that there is no triplewise significant firing under the latter null hypothesis.

Interestingly, the total MI between firing and behavior (a stimulus in the sample
period) in Fig 7 D also has the peak after the target on. This suggests that the
significant coincident firing in Fig 7 C may carry information of sample stimulus.
However, when we look into the decomposed MIs, which is by £—cut= 2, we find not
much MI conveyed by triplewise firing modulation (indicated by the dotted line in
Fig 7 D).

We may note that in Fig 7 D, there is already some amount of MI before sam-
ple stimulus appears (‘son’). This may look very strange, however, this is an epi-
phenomena due to a well-known fact that MI can be overestimated without correction
procedure (Optican et al., 1991; Kjaer et al., 1994; Treves and Panzeri, 1995; Golomb
et al., 1997; Panzeri and Treves, 1996). Here we did not use any correction proce-
dure. Still, our above observation that not much MI is conveyed by triplewise firing

modulation holds because the estimated MI upper-bounds the true MI.

1.3 Example 3: Interesting set of neuron firing

Here, we demonstrate our method to find an interesting set of neuron firing, using
artificial data, and also try to illustrate some practical issues in experimental data
analysis. There are two starting assumptions for this demonstration. First, the number
of simultaneously recorded neurons is assumed as 10. Second, the number of trials is
assumed as 1200 here. The number of trials is severe limitation in real data to detect
higher-order interaction and we consider 1200 as conceivable, or not impossible at
least.

We follow the procedure under the assumption of full homogeneous firing (Nakahara

and Amari, accepted) and ask a question of whether any significant order of firing exists
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against the null hypothesis of ‘independent’ firing at the questioned order. Note that it
will be very difficult to investigate our (artificial) data ‘faithfully’, because the assumed
number of trials is 1200 and the dimension of 10 neurons is 2% — 1 = 1023. The full
homogeneous assumption makes computation simpler and helps reduce the dimension
of n neuron firing from (2" — 1) to n dimension so that it circumvents under-sampling
problem.

In the procedure, when we find the k-th coincident firing of £ neurons insignificant,
we go down to the next lower order, i.e., (kK — 1)-th order, ignoring the higher order
interaction. In this step, the P-coordinates of (k — 1) neurons are easily computed

from the P-coordinates of k£ neurons by
pl(k—l) - Pl(k) + Pl(f% (1=0,..,k), (1)

where Pl(k) denotes the probability of the [-tuple firing among k£ neurons. Let us denote
similarly by Hl(k) etc. Then, our procedure is to compute 0,(;“) given {Pl(k)} and test
it against the null hypothesis of Hl(ck) = 0 by converting its value to p-value in x?(1)
distribution.

We specified probability distributions over three periods of a trial to generate spike
data (see the figure legend) and call them ‘seed probabilities’ below for convenience.
Given generated sampled data, we employed the procedure. Figure 8 A indicates the
estimated mean firing frequency of a single neuron (i.e., the lst-order mean firing
frequency), while Fig 8 B indicates the estimated mean firing frequencies from the
2nd to the 5Hth-order, which appear from top to bottom in the figure. The period (a)
is assumed as control period, in which specified probabilities are independent firing.
While the 1st-order mean firing frequency is the same in the periods (b, ¢) as in
the period (a), the mean firing frequencies in higher order (Fig 8 B) are somewhat

different but, we may say, do not look so different in the figure. We will see, however,
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its intrinsic probabilistic structure significantly different below.

We computed p-value in x?(1) distribution from the seed probabilities and hence,
they are exact values which we hope to observe in our estimation. Some of them,
only relevant ones, are shown in Fig 8 C. No significant order exists in period (a),
simply because the firing in period (a) is independent. In period (b), the p-value of
the 4th-order firing exceeds the 0.95 significance level. In period (c), while the p-value
of the 4th-order drops far below, the p-value of the 10th-order exceeds the significance
level and the p-value of the Tth-order stays around the significance level.

In Fig 8 D, we show corresponding p-values estimated from the sample data, only
for 4th and 7th orders. The indicated significant periods in both orders (Fig 8 D)
overall follow the exact values (Fig 8 C). Although the 10th-order firing should be
significant (as in Fig 8 C), theoretically at least, in our sampled data, it could not be
observed. This is due to a sampling problem. Indeed, all of the 8th, 9th, and 10th
order firings could not be observed in our sampled data (i.e. 158(10) = ]59(10) = ]31%0) =0)
and we started our procedure from the 7th order in the sampled data. This kind
of situation will be most likely encountered in real data analysis and relates to the
sampling problem even under the full homogeneous assumption, while it also indicates
that the significant coincident firing, even if it exists, may not be detected due to the
sampling problem. Finally, as a reference, we mention that the other orders do not

reach the significant level by both exact and estimated values (results not shown).

2 Conclusion

Examples clearly indicated a number of merits of the method proposed in (Nakahara

and Amari, accepted) and also the applicability of the method to real experimental
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data.
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Figure legends

Figure 1: Example of two-neuron case to detect the significant pairwise correlation,
using artificial data. The spikes of two neurons were generated such that whether
a spike exists or not in each bin (1 ms bin width is used) was probabilistically de-
termined in each trial (where the number of all trials was 2000), given an assumed
probability (7,72, m12) in each period (a)-(d): The period (a) (from 0 ms to 100 ms)
is with (11, 72,m12) = (0.04,0.04,0.0031); The period (b) (100 ms - 300 ms) is with
(0.04,0.04,0.0016); The period (c) (300 - 500 ms) is with (0.12,0.12,0.0144); The
period (d) (500 - 700 ms) is with (0.12,0.12,0.0260). To estimate the probabilities
from artificially-sampled data, averaged values in each bin were obtained over all tri-
als and its value in each bin was then finally determined by smoothing over several
bins (set as 25 ms). (A) Mean firing frequency for two neurons. Because the mean
firing frequency of the two neurons was the same, the two lines are superimposed with
very little fluctuation. (B) Correlation coefficient (COR, also called the N-JPSTH).
(C) 5 (= 6012). (D) Kullback-Leibler (KL) divergence in correlation against the null
hypothesis of independent firing (see the main text) is indicated by solid line. The
corresponding p-value, derived from the x?(1) distribution, is indicated by dashed line.
(E) KL divergence in correlation against the null hypothesis of the averaged activity
in the control period. The corresponding p-value, derived from x?(1), is indicated by
dashed line. (F) Using the formulation that the firing in the control period and in
other periods is from the same correlation level (see (Nakahara and Amari, accepted)
for details), the p-value, derived from x?(2), is indicated by dashed line, while the sum

of corresponding KL divergences is indicated by solid line.

Figure 2: Example of two-neuron case to obtain mutual information (MI) between

firing and behavior and its decomposition, using artificial data. The spikes of two
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neurons were generated and estimated in a similar manner to Fig 1. The number of
stimulus condition is assumed to be two, denoted dy s1 and s2, and the number of trials
per stimulus was 500; In the period (a) (from 0 ms to 100 ms), assumed probabilities
(11, M2, m2) for s1 and s2 were given as (0.02,0.02,0.002) and (0.02, 0.02, 0.002), respec-
tively; In the period (b) (100 - 300 ms), (0.08,0.02,0.004) and (0.02,0.08,0.004); In
the period (c¢) (300 - 500 ms), (0.08,0.02,0.002) and (0.02,0.08,0.015). (A, B) Mean
firing frequency of the two neuron with respect to sl (A) and s2 (B), respectively.
Solid line indicates the mean firing of one neuron, whereas dashed dot line indicates
the mean firing of the other neuron. Dashed line indicates the mean firing of the
coincident firing. (C) ML The (total) MI is indicated by solid line and is decomposed
into two terms: the MI by the modulation of the mean firing rate (dashed line) and

the MI by the modulation of the pairwise correlation (dashed dot line).

Figure 3: Examples for auto-correlation, using artificially simulated data. (A) Mean
frequency of one neuron, for which control and test periods were assumed from 0
to 300 ms and from 300 to 600 ms, respectively (see below for data generation). (B)
Auto-correlation in the control period (indicated by dashed line) and in the test period
(solid line). (C) The corresponding 65 is indicated in the control period (dashed line)
and in the test period (solid line). (D) The corresponding p-value derived from x?(2)
is indicated. In simulation, spikes were generated by an uniform random variable in
[0,1]. A spike was given at time ¢ when the value of the variable exceeded a given
periodic function f(¢) and no spike was given otherwise. The periodic function used
was f(t) = 5sin(27 f,t/1000)/200 4 0.955, where f, = 12.5 (Hz), in the control period
and f(t) = 7sin(27 f,t/1000) /200 + 7 sin(27 ft/1000) /300 + 7 sin(27 f./1000) /600 +
0.965, where f, = 25, f, = 15, and f., = 10, in the test period. The number of trials

was 50 and the bin width was set as 5 (ms) (with overlapped smoothing window = 5
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ms) to obtain the estimated probabilities.

Figure 4: Example of two neurons recorded from the prefrontal cortex (Anderson et
al., 1999). Experimental task was a delayed matching sample task. Monkeys were
instructed by a fixation cue to fixate, from ‘foc’ (fixation occur). With a certain delay,
one of four stimuli was randomly presented from ‘son’ (sample on) untill ‘soff’ (sample
off), during which the monkeys continued to fixate on the fixation cue. Then the
four stimuli appeared, indicated by ‘ton’ (target on), and the monkeys were required
to make a saccade towards the stimulus shown in the sample period (from son to
soff). We took the last 500 ms before ‘son’, which is within the fixation period (foc -
son), as the control period. The values of the coordinates for probability distributions
and the firing frequency are obtained by using 25 ms bin with a 140 ms smoothing
window. (A) Mean firing frequencies over all trials. Solid and dashed dot lines indicate
mean firing of each of two neurons, while dashed line indicates the mean coincident
firing. (B) Mean firing frequencies with respect to stimulus in sample period were
shown, being superimposed, where different line types (solid, dashed etc) indicate
different stimulus. (C) Decomposed KL divergence in correlation is indicated by solid
line, while the corresponding p-value, derived from x?(2) distribution, is indicated
by dashed line. The significance level for p < 0.05 (i.e. p = 0.95) is also indicated
by horizontal line. (D) Mutual information (MI) between firing and behavior and
its decomposition, where the MI is with respect to stimulus in the sample period as
‘behavioral choice’. Total MI is indicated by solid line. The MI by the modulation of
mean firing rates is shown by solid line, which nearly stays the same as the total MI
in a whole trial. The MI by the modulation of coincident firing is indicated by dotted

line.
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Figure 5: Example of three-neuron case to detect the significant triplewise interac-
tion, using artificial data. The spikes of three neurons were generated and estimated
in a similar manner to Fig 1. (A) The n-coordinates. Since we treated a homoge-
neous case here for simplicity, 7 = (1;, 9ij, i) is shown from top to bottom, be-
ing superimposed with the same order of n-coordinates. (B) Correlation coefficients
(COR) of three pairs of neural firing are shown, being superimposed. (C) The sec-
ond order, 0;; = {0i2,613,023}. (D) The third order, 6123. (E) The p-value, from
x%(2), to indicate triplewise coincident firing against the null hypothesis of the aver-
age activity in the control period. (F) The p-value from x?(8), to indicate pairwise
and triplewise coincident firing together against the null hypothesis of the average
activity in the control period. As for spike data generation, the number of trials
are set as 2000 and the spike probability (in 1 ms bin) is assumed to be homoge-
neous in each period; n = (m, mij, mijk) = (0.0450,0.00258,0.00020) in period (a),
n = (0.0450,0.0090, 0.0040) in period (b), and n = (0.0449, 0.0090, 0.0001) in period
(c). Arrows in the right hand side in Fig B, C and D indicate true values (see Fig 1
legend).

Figure 6: Example of three-neuron case to obtain mutual information (MI) between
firing and behavior and its decomposition, using artificial data. The spikes of three
neurons were generated and estimated in a similar manner to Fig 1. (A, B) Mean firing
frequency of the three neurons with respect to sl (A) and s2 (B). In each figure, the
mean firings of a single neuron, of the pairwise coincident firing, and of the triplewise
coincident firing are indicated from top to bottom. (C) MI and its decomposition by
k—cut= 2. The total MI is indicated by solid line. The two decomposed MIs, one
by modulation of taking the mean firing rate and the pairwise interaction together

and the other by modulation of the triplewise interaction, are indicated by dashed
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and dotted lines, respectively. (D) MI and its decomposition by k—cut= 1. The total
MI is indicated by solid line. The two decomposed MIs, one by modulation of the
mean firing rate and the other by modulation of taking the pairwise and triplewise
interactions together, are indicated by dashed and dotted lines, respectively. As for
spike data generation, the number of trials per stimulus was 1000 and in each stimulus,
the spike probability is assumed to be homogeneous: For s2, assumed probabilities are
(mi, i, Mijie) = (0.08,0.00704,0.00041) over all the periods (a-d). For sl, assumed
probabilities are (n;, 7ij, mijx) = (0.08,0.00704,0.00041) in the period (a). Compared
with these probabilities, n; changed to 0.12 in the period (b), n;; changed to 0.00049
in the period (c), and 7, changed to 0.00700 in the period (d).

Figure 7: Example of three neurons recorded from the prefrontal cortex in the same
task as in Fig 6 (Anderson et al., 1999). (A) Mean firing frequencies over all the four
stimulus. Each of three solid lines indicates the mean firing of three neurons. Each of
three dashed dot lines indicate the pairwise mean firing. Thick solid line indicates the
triplewise mean firing. (B) Mean firing frequencies with respect to stimulus in sample
period, being superimposed, where different line types indicate different stimulus. (C)
Examination of triplewise coincident firing. Three p-values are shown: one derived
from x?(1) distribution (indicated by dotted line) against the null hypothesis of inde-
pendent firing and, two, derived from x?(1) (solid line) and from x?(2) (dashed line),
against the null hypothesis of the averaged activity in the control period. (D) Mutual
information (MI) between firing and behavior and its decomposition by k-cut = 2.
The MI is shown with respect to stimulus in the sample period, as ‘behavioral choice’.
The total MI is indicated by solid line. The MI by modulation of taking mean firing
rates and the pairwise interaction together is also indicated by solid line, which is

nearly the same as the total MI. The MI by modulation of triplewise interaction is
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indicated by dotted line.

Figure 8: Example of ten-neuron case to find an interesting set of neurons, using
artificially simulated data. The spikes of ten neurons were generated and estimated in
a similar manner to Fig 1. The number of trials was set as 1200. The spike probabilities
are assumed to be homogeneous so that we only define 10 dimensional coordinates,
which we indicate here by n-coordinates. In all periods (a-c), n; is fixed as 0.010. In
period (a), the firing is assumed to be independent, i.e. 7, = n¥ (k = 2,...,10). In
period (b), 7 = 0.0125 x (0.285)*=2 (k = 2,...,10). In periods (c), 7, = 0.0125,73 =
0.0020, and 7, = 0.0003 x (0.5)*=* (k = 4,...,...,10), to which there are made very
small adjustments. (A) Mean firing frequency (of the 1st order). (B) Mean firing
frequencies of the 2nd, 3rd, 4th and 5th order, which appears from top to bottom. (C)
Theoretically expected p-values in x?(1) for the 4th (indicated by dashed line), 7th
(by solid line) and 10th order (by dotted line). (D) Estimated p-values for the 4th (by
dashed line) and 7th order (by solid line).
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