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Abstract

Motivation: Given a vast information of gene expression data, it is critical to develop
a simple and reliable method to investigate a fine structure of gene interaction. We show
how an information geometric measure help us this investigation.

Results: We introduce an information geometric measure of the log linear model
of binary random vector, making connection to graphical models. By representing gene
interaction through this model, we can investigate a fine structure of gene interaction.
By using specific examples, we provide a detailed description of the method. To validate
the method, we also demonstrate that the method can successfully discover biologically-
known findings, with respect to Wiskott-Aldrich Syndrome Protein, using a microarray
dataset of human tumor cells.

Contact:  hiro@brain.riken.go.jp

1 INTRODUCTION

Experiment using DNA microarray chips provides us with a vast amount of information on
gene expressions through mRNA transcripts simultaneously. One of central challenges is to
discover relationship of gene expression data, or gene network, hidden in data. To infer such
a gene network, there have been strong interest in applying graphical models.

Graphical models, including Bayesian networks, are a general framework in statistics and
computer science to investigate interaction of random variables (Pearl, 1988; Lauritzen, 1996).
We have seen, for example, that hierarchical clustering, a popular method in field, is useful in

*corresponding author; tel: +81-48-467-9663; fax +81-48-467-9693; hiro@brain.riken.go.jp



RIKEN BSI BSIS Technical report No02-02 2

inspecting gene networks (Eisen et al., 1998). Graphical models are in principle more powerful
than hierarchical clustering in that the former can treat a finer structure of interactions among
variables than the latter because the latter only use the second-order (pairwise) interaction
among variables. To investigate a gene network, we need to know not only pairwise but also
the third-order (triplewise) and higher-order interactions. As a simplest situation, we may
ask whether one gene may co-regulate two other genes or not and this is a question of the
third-order (and higher) interaction, not of the second-order. While theories of graphical
models have been developed in past decades, also with ongoing current progress (Pearl, 1988;
Whittaker, 1990; Lauritzen, 1996), analyses by graphical models have recently proven to be
very useful in analyzing gene expression data (Friedman et al., 2000; Pe’er et al., 2001).

The present study somewhat follows their footsteps in gene expression analysis, however,
by using different perspective from the information geometry framework (Amari and Nagaoka,
2000) and focusing on a specific simple probability model(Amari, 2001; Nakahara and Amari,
2002; Nakahara and Amari, submitted), namely a log linear probability model of a binary
random variable vector (Bishop et al., 1975). Interestingly, this model corresponds, roughly,
to graphical log-linear model, called in the graphical model framework (Whittaker, 1990),
although the former contains the latter because the latter has more constraints (Whittaker,
1990). Using the information geometry perspective, we can fully utilize the properties of the
model and show that this model has a significant merit in analyzing gene expression data.

The present paper is organized as follows. First, we briefly make a connection of an
information geometric measure of the log-linear model with graphical models in a general
case. Second, due to limited space, we limit ourselves to discuss the measure in the case of
three and four variables so that we can provide detailed explanation. While our discussion and
demonstration in the present paper mainly treat those cases, we emphasize that the scope of
this approach can be easily extended, as already demonstrated in analysis of multiunit neural
spike data (Nakahara and Amari, submitted). It is very simple to re-represent microarray
data by the information geometric measure, which is one of the merits of our method. The
re-representation of the measure already helps us look into gene interaction. We can further
quantify the measured values in a simple manner, too. Third, we touch upon our preprocessing
before treating real data and show how gene interaction of real-value in microarray data can
be represented through the log linear model of a binary random vector. Fourth, we show its
validity using a microarray dataset of human tumor cells (Khan et al., 2001) and investigate a
function of Wiskott-Aldrich Syndrome Protein (WASP) on other genes in phagocytosis. Our
method reveals a function of WASP on other genes. Finally, discussion follows.

2 METHODS

2.1 Preliminaries

Here, we make a brief remark on graphical models relevant for the present study, using undi-
rected graphs. A key concept of graphical models is Markov independence, or conditional
independence. Graphical models try to estimate dependency of random variables, utilizing
graph relation (i.e. nodes and edges), where nodes and edges represent random variables and
their dependency, respectively. To measure the dependency, graphical models utilize condi-
tional independence: Each variable X; is independent from other variables, once the values
of its ‘parents’, which are random variables directly connected to X; by edges, are fixed. To
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illustrate this point, let us divide a random variable vector X™ = (X7, ..., X,,) into three terms,
(X1, pa(Xy),npa(Xy)), where pa(X;) is parents of X; and npa(X;), which is variables other
than X; and pa(X;). We then have conditional independence,

P(X1|X2, ,Xn) = P(X1|pa(X1),npa(X1)) = P(X1|pa(X1))

When two variables, say X; and X, are independent, the two variables do not have an edge
between them. A simplest example of three variable case is given in Fig 1 A, where two
variables (X, X,) are independent conditionally to the other X3, so that we have

P(Xl,X2|X3) — P(X1|X3)P(X2|X3)

Thus, edges indicate dependency between random variables (i.e. nodes), based on conditional
independence. We show below how conditional independence is translated into information
geometric measures, also indicating the merits of using this measure.

In graphical models, in general, there is a process of ‘estimating graph’: We usually start
with assuming a graph structure, then use data to validate the structure, that is, add and/or
delete nodes and edges (variables and dependency) and finally obtain estimated graphs. We
show below how this validation can be performed in use of the information geometric measure.

2.2 Log linear model and information geometric measure

Here, we briefly mention a most general log linear model of a binary random variable vector.
See (Amari, 2001; Nakahara and Amari, submitted) and also (Bishop et al., 1975) for details.

After preprocessing (see Section 2.6), we represent variability of gene expression ‘through’
the probability distribution of a binary random vector variable. For a moment, let us assume
that we obtain a n-dimensional binary random variable vector, X = (X, -+, X,); Each X;
represents each gene and becomes 0 or 1, which can be considered to indicate that X; is not
expressed or fully expressed, respectively, in each microarray experiment'.

Any probability distribution of binary random vector can be exactly expanded by log linear
model. Let p = p(x),z = (z1, -+ ,2,),2; = 0,1, be its probability. Each p(zx) is given by 2"
probabilities

Diyein = Prob {X1 = il, v ,Xn = Zn}, Zk = 0, ]_, subject to Z Diyein = 1

i1, i

and hence, the set of all the probability distributions {p(zx)} forms a (2" — 1)-dimensional
manifold S,,. One coordinate system of S, is given by the expectation parameters,

ni = FElz], (t=1,.n) nj=FElxiz;], (1<]),...;, Mown =FElx; - x,]

which have 2" — 1 components. This coordinate system is called n-coordinates in S,, (Amari
and Nagaoka, 2000). On the other hand, p(x) can be exactly expanded by

logp(x) = Z Oix; + Z Oijzix; + Z 0ijkixixy + -+ Op@y - - Ty — Y,

1<j 1<j<k

'In our analysis, we do not actually take a gene expression as binary, as discussed in Section 2.6, 3 later.
For presentation simplicity, however, we describe a gene expression as binary till Section 2.6.
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where the indices of 0;j;, etc. satisfy ¢ < j < k, etc and ¢ is a normalization term, corre-
sponding to —logp(zy =z =, ... =z, = 0). All 0,4, etc., together have 2" — 1 components,
forming another coordinate system, called §-coordinates (Amari and Nagaoka, 2000).

Given gene expression data, both of the above coordinates can be easily estimated in prin-
ciple. Information geometry assure us that the n-coordinates and f#-coordinates are dually
orthogonal coordinates. The properties of the dually orthogonal coordinates remarkably sim-
plifies investigation on dependency of random variables. While details of a general case can
be found in (Amari, 2001; Nakahara and Amari, submitted), we show the merits of the dual
coordinates, using specific examples below, in the present paper.

In a most general case, a n-dimensional binary random vector results in 2" — 1 dimensional
coordinates. In microarry data, n may become O(10%) so that we would never have enough
samples to estimate all coordinates. In practice, hence, we should not use an above full model
as but restrict our model, based on domain knowledge and/or by some other approaches (Naka-
hara and Amari, submitted). Any choice of graph structure, or any dependency, in graphical
model framework corresponds to one of restricted models (Whittaker, 1990). This is another
reason why we chose to use some specific examples for illustration below.

2.3 Conditional independence in information geometric measure:
Three variable case

In the next few sections, we illustrate use of the information geometric measure and its relation
to graphical models in case of three and four variables. Remember that a generalization of
these examples is possible, which we hope would be self-evident in each example. For three
variable case, the log linear model is given by

logp(x) = Z 0;x; + Z Oijrizj + bhasz12203 — ). (1)

It is easy to compute all coefficients, i.e. easy to estimate them from gene expression data:

0, = log p100, 0, = log p010, 0 = log Poo1 Oy = log p110p000, Oy = log p011p000,
Pooo Pooo Pooo P1ooPo1o Po1oPoo1

P101Pooo - P111P100P010P001
, 0103 = log

013 = log Y = —log pooo- (2)

)
P1ooPoo1 P110P101Po11Pooo

Any distribution of the three binary random variable, or any type of dependency of them, can
be represented by this f-coordinates, which we denote by

0= (91,92,93;94,95,96;97) = (91,92,93;912,913,923;9123)-

Let us go back to an example shown in Fig 1 A, where the three variables (now binary
ones) have a relation P(X;, X5|X3) = P(X;|X3)P(X3|X3). This relation can be represented
in terms of #-coordinates as follows.

Theorem 1.

P(Xl,X2|X3 = 0) = P(X1|X3 = O)P(X2|X3 = 0) < 01,=0
P(Xl,X2|X3 == 1) == P(X1|X3 == 1)P(X2|X3 — 1) <~ 012 + 0123 — 0

Obviously, by this theorem, we realize

P(XI,X2|X3) = P(X1|X3)P(X1|X3) < 912 = 9123 =0. (3)
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Figure 1: A Example of three variables B When #15 = 6153 = 0a. X3=0b. X3=1. A
rectangle is to indicate that a value of the random variable is fixed (as for X3), while a circle
is to indicate a random variable. C Example of four variables

Hence, 615 = 6153 = 0 is equivalent to the relation shown in Fig 1 A2,

Theorem 1, however, tells us more than Eq 3 does. Theorem 1 indicates that by inspecting
the measurement of 5, 53 from gene expression data, we can directly infer a gene interaction.
There is a distinctive meaning of #;5 and 6;23. Recall that X3 = 0 indicates that the gene
X3 was not expressed, whereas X3 = 1 indicates that the gene X3 was expressed (also see
Preprocessing section). Hence, if we find 615 = 6123 = 0 in data, we see that two genes, X; and
X, are independent (conditionally to X3), regardless of whether X3 = 0 or = 1. On the other
hand, for example, if we find 615 = 0 but 6193 # 0, two genes, X; and X5, are (conditionally to
X3) independent only when the gene X3 is not expressed (Fig 1 B a) but, more importantly in
gene data analysis, that X; and X, become dependent when the gene X3 is expressed (Fig 1
B b). This is very useful information, for example, to see an effect of the gene X3 on the
other two genes. Furthermore, the sign of 63, positive or negative, indicates that the gene
X3 induces positive or negative, respectively, interaction between genes X; and X,. Note
that analysis of this type (i.e., 612 = 0,60193 # 0) is not usually treated in graphical models
because such a type violates correspondence of graph relation with conditional independence
in graphical model framework (Whittaker, 1990).

2.4 Quantifying estimates: three variable case

Next, we address how to quantify our estimates of #-coordinates. For example, is 613 = 0.001
significantly different from zero or not? How about #;53 = 0.1 or 10?7 This question corresponds
to ’validation of a graph structure’ in graphical models and is an important question in the
information geometric measure as well. In statistical estimation of parameters for a probability
model of multiple random variables, in general, we have to take care of dependency between
random variables, because their dependency may lead to correlated estimation errors, for
example, which is why graphical models need to 'propagate beliefs’ (Lauritzen, 1996). With
such a care, we need to quantify significance of its estimated values.

Dual orthogonality of #- and n-coordinates allows us to treat these issues in a fairly simple
manner. Let us first write n-coordinates (whose definition is similar to those in Preliminaries
section) in this three variable case as follows:

n= (77177727773;77477757776;777) = (771,772,773;7712,7713,7723;77123)-

Note that estimation of these coefficients is very easy. Estimation errors of the dual coordi-
nates are orthogonal to each other, in other words, we can estimate any subset of #-coordinates

2We assume 613 # 0,623 # 0 so that there are edges between X; and X3, between X, and X3 in Fig 1 A
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independent from the complementary subset of n-coordinates. Second, quantification of esti-
mated values can be easily done via the Fisher information matrix of the mixed coordinates
and due to the dual orthogonality, this Fisher information matrix has a very simple structure,
resulting in easy procedure of quantification (Nakahara and Amari, submitted).

To use the dual orthogonality of the #- and n-coordinates, we now introduce the mixed
coordinates as follows:

Ck = (Cla ---;C?) = (771, ---a77k71,9k,77k+1---,777)

Each of these mixed coordinates (k = 1,...,7) is useful to single out different dependency.
Here, we only explain the case of {; in detail (also see the end of this section). ¢, is useful
to single out the triplewise dependency/interaction i.e., 87 = 023, regardless of the first-order
and the second-order modulation of variables, which are represented by (M1, .--16)-

Suppose our estimate of expression data is given by C7 M1+, 5 M6, 07) and suppose we like
to 1nvest1gate whether 07 is different from zero. Then, our null hypothesis, denoted by ¢Y, is
given by ¢% = (., ,.7ig, 09), where #2 = 0. Difference in (s, i.e., f155 — 0% = 07, by itself,
does not attain a nature of distance. This is because the metric varies at each probability
distribution p(; ;) (Amari and Nagaoka, 2000). We can, however, quantify the discrepancy
between p(a; ¢%) (null hypothesis) and p(x; ¢,) (our estimate) by KL divergence,

. (33 C?)
C7’C2 ZP C? p(z; C)

The KL divergence works as a quasi-distance. We have, asymptotically?,

2ND(C%Co) & T (C9) (Bras — 005)% = Tr7(C) (0123)* = T72(¢9) (07)* = As

where N is the number of samples. The right hand side is a quadratic approximation of
the left hand side. I(¢?) indicates the Fisher information matrix, with dimension 7 x 7, of
the mixed coordinates at the point (;2 in the probability space. Generally speaking, with
this quadratic approximation, we need to use a general Riemannian metric, i.e., of the form
Zz?,jzl 9:;GiCj- In our case, however, because of dual orthogonality, we only need to use a single
component, Ir7(¢2) in I(¢9) = (I;;(¢2)) (4,5 = 1, ..., 7) and furthermore, have a simple formula
of I7(¢Y) (Nakahara and Amari, submitted). Hence, we can easily quantify the estimation of
0123. We can then follow the formulation of the likelihood ratio test and even get p-value by
A7 ~ x?(1), where x?(k) denotes x? probability distribution with a degree of freedom, k.

In a similar manner, we can inspect any of 6 (k = 1,...,7) by using {,. Furthermore,
when we like to inspect two § parameters together, say 8, and 6; together?, we can formulate
the mixed coordinates such as ¢,; = (91,72, 03,04, 75,76, 07). Then, we can again use the
dual orthogonal property to single out the two term together independent from other terms.
Similarly, we can single out any subset of @, so that we can easily inspect gene network
structure and single out interesting dependency.

*Below, we similarly use notation \;, corresponding to ¢, (e.g. Fig 3)
4For example, this may be interesting in inspecting 84 + 67 = 612 + 6123 = 0 in relation to Theorem 1
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2.5 Conditional independence: Four variable case

Here, we briefly illustrate a case of four variables, hoping to provide a sense of a general scope
of our approach. The log linear model now becomes

Ing(CL') = Z 911‘1 + Z gi]‘l‘il‘j + Z gijkf,l,’il’jl’k + 912341‘1$2$31‘4 — ’g/} (4)
We use an example shown in Fig 1 C. First we have

P(Xy, Xs, X4|X3) = P(X:|X3)P(X5| X3)P(X4|X3)
< P(Xl,X2|X3,X4) = P(Xl,X2|X3) and P(Xl,X2|X3) :P(X1|X3)P(X2|X3)

We can relate the above quantities to #-coordinates by inspecting each term in the above
right hand side identity. Note the following relation:

P(Xl,X2|X3 = 0,X4) = P(Xl,X2|X3 = 0) < 914 = 924 = 9124 =0
P(X,, X5/ X3 =1,Xy) = P(X1,Xo|X3=1) <= 014+ 0134 = O24 + O34 = 0124 + 01234 = 0

Once these conditions are satisfied, we have, similarly to Theorem 1:
Theorem 2.

P(Xy, X5, X4| X3 =0) = P(X1]| X3 = 0)P(X3|X3 = 0)P(X4| X3 =0)
— D=0y =02=0 0=0

P(X, XoXy|X3=1) = P(X{|X3=1)P(X3| X3 =1)P(X4| X5 =1)
— 014 + 0134 = 024 + 0934 = 0194 + O1234 = 0, 012 + 0123 =0

The above relation tells us, in terms of f-coordinates, more than the relation of P(Xy, X5, X4|X3) =
P(X1]|X3)P (X5 X3)P(X4|X3) , similarly to discussion in Section 2.3. Thus, we can again infer
details of gene network by inspecting f#-coordinates estimated from data. We may infer recur-
sively a larger size of gene network in a similar manner, although it is certainly constrained
with the limitation of number of samples in general. We also only mention that quantification
of estimated value can be dome in a similar manner to Section 2.4.

Let us remark on the relation between three and four variable cases, using example of 635, =

log BLLLPLOOPOL0OPOOL - which s of the three variable (Eq 2), and of 61, and 0{,,, which are from
P110P101P011P000

the four variable case (Eq 4). We can easily compute, for example, f{,; = log 2LL0PL000P0100P0010

P1100P1010P0110P0000 ’
Notably, we have 63,; # 61,,. This is because the three variable model ignores the fourth
variable influence on the three variables. Next, by inspection, we get a relation 0]y, + 01, =
4 4 — P1111P1001P0101P0011 3 3 4

9123|4, where we defined 9123|4 = log T ——— By comparing 67,5 and 9123‘4, we see

that the two terms together, 01y, + 0}53, indicates the third-order interaction of (X, X5, X3)
conditional to X; = 1, whereas 62,; indicates this interaction regardless of the value of Xj.

2.6 Preprocessing

Here we discuss our preprocessing procedure, which takes two steps. First, each sample data is
normalized by multiplying because each experiment has been affected by differences in various
factors (e.g. different amounts of initial mRNA) and these factors are considered to have,
roughly, proportional effects. After this normalization, we discard the genes whose expression
of all samples are very low, i.e., less than a certain threshold, which corresponds to presumption
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that such genes have no expression in all samples and hence, are of no interest. In fact, this
step is already taken in the data used in the present study.

Provided the above procedure of obtaining data by itself, we consider the gene expression
data as indicating only the relative degree of expression, using real values, compared with a
process of an original cell (or original biological tissue). It is then more visible to assign 0
to the null expression and 1 to the full degree of expression to quantify the relative degree
of expression. This is the second step: We re-represent the degree of gene expression as in
[0,1] and then represent interaction of genes ‘through’ a log linear model of a binary random
vector. In other words, we do not reqard gene expression by itself as binary. We only use the
log linear model as a means to represent interaction of genes. This point is important because,
for example, some researches are concerned with whether binary Boolean network could be
enough to fully represent gene interaction (Akutsu et al., 2000).

How then can we convert a real value of each gene into a value bounded in [0, 1]7 There can
be several ways of this quantification. One way is to use order statistics. The other, used in
the present study, is to normalize those relative degree of expression. Now let us denote values
of gene expression of i-th gene by (1, %2, ..., #;n5), where each x;; has a real value and N is
the number of samples. For this purpose, we obtain the mean and variance of (x;1, 2, ..., T;n),

denoted by p; and o2, and convert z; to z; by z; = \/21— JZ exp{—(t — p;)?/207}dt. Now

2
oy

each of (zj, 22, ..., zin) expresses a relative degree, bounded by [0,1]. Using these z;s, for
example, pigo is computed by

N
1
P1oo = N ijzlj(l - Z2j)(1 - ZSj)-

In a similar manner, all p;; (and any p;,;,..;,) can be computed, so that it is easy to obtain
both #- and 7n-coordinates after this preprocessing.

3 RESULTS

The present study investigated a microarray dataset of human tumor cells (Khan et al., 2001),
available from http://www.nhgri.nih.gov/DIR/Microarray/Supplement/. The data set® con-
tains 88 microarray experiments of 2,308 genes. We focus on analyzing the gene network
associated with Wiskott-Aldrich Syndrome Protein (WASP). Wiskott-Aldrich syndrome, char-
acterized by thrombocytopenia, eczema and immunodeficiency, results from mutation in WAS
gene. The product of WAS gene, i.e. WASP, plays a key role in phagocytosis (see below).
We first took all possible combination of three genes, one of which is fixed as WASP
and we denote each set of three genes by (X1, X2, X3) = (X,Y, WAS). After preprocessing
described above, we estimated their interaction in terms of #-coordinates and hence, got seven-
dimensional vector @ for each set of three genes. Here we mostly inspect 5 and 053.° These
two 6 components could reveal the effect of WAS expression on other two genes (Fig 1 B).
Figure 2 shows the results of estimation. To help grasp nature of WAS (Fig 2 A), we also
plotted the values by taking X3 = COL5A1 gene from the same data set (Fig 2 B). COL5A1

5Gene names were abbreviated according to UniGene clusters in the following description.

6Indeed, it is necessary to investigate all components to fully determine the gene structure of each set of
genes but due to limited space, we cannot discuss all of them. Still, we make some brief comments on other
components when we discuss specific examples of the set later.
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Figure 2: Distribution of (612, 6123). A Human tumor cell data (Khan 2001 et al), X3 =WAS.
B X3 =COL5A1. C Independently-random data.
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Figure 3: Histograms of the number of genes according to A 6153 B 615 C A\; D A4 (bin: 0.01)

gene is biologically less-interacting because it is for structural protein (collagen fiber), not for
regulatory protein. Furthermore, we also generated random data, using independent Gaussian
distributions, and plotted the estimated values (Fig 2 C).

It is clear, even by simply looking at the shape of distributions, that both of WAS and
COL5A1 (Fig 2 AB) have interaction different from a completely independent one (Fig 2 C),
while WAS still has interaction slightly different from COL5A1 (Fig 2 B). This observation
becomes more clear when we plot 64 (012) and 6, (f123) separately in histogram (Fig 3 AB)
and their quantified values, Ay, and \; separately (Fig 3 CD). WAS and COL5A1 have almost
the same second-order interaction (as a distribution), yet different from a random one (Fig 3
BD). WAS has the third-order interaction different from both COL5A1 and a random one,
while these two have almost the same third-order interaction (Fig 3 AC).

To demonstrate the utility of the measure, we chose to investigate the set of genes that
has 615 ~ 0 but a large 53 in the above distribution (see Section 2.3); First, we collected the
set of genes that has A\, values less than 0.00098, corresponding to 2.5 percent range around
04 = 0 under x?(1). There remained (roughly) 1.7 x 10° sets of genes among original (roughly)
26.6 x 107 sets of genes. Then, we looked into the value of A7 in this pool of 1.7 x 10° sets.

The set of genes with the largest A7 is shown in Fig 4 A, where the value of other two genes,
TLOC1 and EST, are plotted in scatter-gram with the WAS values indicated by color. Note
that we are now discussing real values of three genes (bounded in [0, 1] by our preprocessing).
As the value of WAS increases from 0 to 1, the correlation (COR)” between the other two
genes emerges through a positive f13. We may also note in Fig 4 A that as the WAS value
changes, the each mean of the two genes seems to change (e.g, the EST values with small

"As a reference, when we compute the COR by separating scattered points with a threshold of 0.5 WAS
value to two groups, the COR of the points with < 0.5 WAS value and those with > 0.5 was —0.03 and 0.796,
respectively. The COR values in the following text and figures are calculated similarly.
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WAS values tend to be small). This is because changes in the WAS value affect the marginal
distribution of each gene through the terms such as 6,3, 653 etc. We can easily quantify such
an effect as well (not shown here).

i C
A B a) Low WAS b) High WAS WAS

)
S I e (o] ) e
org . o ] or ’ . 07
SR - & o8 i ' - o5
<

('7) 04 . . 0.8 E . .
" - " COR-0.116 . COR 0.673
0.25 0.5 0.75 1 0.25 0.5 0.75 10 0.25 0.5 0.75 0
TLOC1 HLA-DMA HLA-DMA

Figure 4: A, B Scatter-gram of the expression values of two genes with WAS values colored.
In B, with WAS values < 0.5 (a) and > 0.5 (b) B ¢ Scheme for the COR driven by WAS.

A Low WAS B a)High WAS, Low ARHG  b)High WAS, High ARHG ~ aRHG C
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& 0 R & 0.4 . . -] 0.5} WAS
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0.2 Lo ) 0.2 . 0.2
COR 0.515 : COR 0.866
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Figure 5: Example by the four variable model. A WAS < 0.5 B WAS > 0.5 (a) ARHG < 0.5
(b) ARHG > 0.5 C Scheme for the COR driven by ARHG and WAS.

There is the set of genes (Fig 4 B), among the top five largest A7, that reflects a biologically-
known relation, which we consider as supportive for the method’s validity. Let us describe the
relation shortly: WASP plays an important role in phagocytosis (Higgs and Pollard, 2000; May
and Machesky, 2001). WASP is activated by receptors on the cell surface that detect things to
take up. Activated WASP interacts with Arp 2/3 complex, which assembles actin filaments so
that plasma membrane invagination occurs. Then, phagosome, fused with lysosomes, forms
phagolysosomes in which the engulfed material is killed and digested. Digested peptides are
bound with HLA-DM protein and then transported to the cell surface for presentation to T
cells (Ramachandra et al., 1999). The fact that single mutation in WAS gene causes Wiskott-
Aldrich syndrome indicates that WASP is indispensable in this whole process.

Our method indicates that the COR between ARPC2 (Arp 2/3 complex) and HLA-DMA
emerges as WASP becomes expressed (Fig 4 B). This corresponds to the above description
in that WASP is indispensable in phagocytosis, in which ARPC2 and HLA-DMA participate.
Furthermore, let us observe in Fig 4 Ba that the scattered points tend to align vertically
around small HLA-DMA values. In other words, given small WAS values, we observe that (1)
the ARPC2 values are rather scattered and (2) that the HLA-DMA values tend to concentrate
in small values. This (1) may correspond to the known fact that Arp 2/3 complex can be
activated by other proteins than WASP (May, 2001). To the author’s knowledge, there is
no biological evidence for a direct relation between WASP and HLA-DMA. With (2), yet,
our analysis suggest that WASP may have a tight relation to HLA-DMA expression, which is
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further supported by the observation that the HLA-DMA values tends to be large, when the
WASP value is large (Fig 4 Bb).

We then investigate the gene triplet (X, Xo, X3) =(HLA-DMA, ARPC2, WAS), using the
four variable model: We investigated the set of gene, in each of which we fixed X, X5, X3
as above and assigned a gene to X, from the rest of genes. Based on Theorem 2, we chose
to investigate the set of genes that satisfies 014 = 0oy = 0194 = 015 = 0 and 634 = O34 = 0.
After collecting the set of genes that satisfies the above, we sorted all the sets in order of
0195 + 01934. The set with the tenth largest of 695 + 01934 is given by X, =ARHG?®. Members
of Rho-subfamily proteins are known to activate WASP and ARHG is one of them. Hence,
we should expect that the effect of WASP on HLA-DMA and ARPC2 would be enhanced by
presence of ARHG, because the more ARHG, the more likely WASP is activated and because
WASP can be activated without ARHG, e.g. by other members of Rho-family.

We observed the corresponding relation by the information geometric measure (Fig 5).
When the WAS values are small, the COR between ARPC2 and HLA-DMA is rather weak
and is not affected by the degree of ARHG expression® (Fig 5 A). On the other hand, when
the WAS values are large, the COR exists (Fig 4 Bb) and furthermore, the COR is stronger
when ARHG is expressed (Fig 5 Bb) than when ARHG is not expressed (Fig 5 Ba).

4 DISCUSSION

We have shown how the information geometric (IG) measure of the log linear model of a binary
random vector can be applied to analyze gene networks, using the three and four variable
cases and also making correspondence to graphical model framework. We re-represented gene
interaction, where gene expressions are given by real values, ‘through’ this log linear model
in terms of f-coordinates, i.e., the IG measure. This re-representation by the IG measure
is very simple, which is one of the strengths of our method. We indicated that each term
of the IG measure can have a distinct meaning and showed, using such a distinct meaning,
that we can investigate a fine structure of gene interaction, some of which would not be
treated in graphical model framework. A method of quantifying the estimated IG measure
is also presented. Using a dataset of human tumor cells, we demonstrated the validity of 1G
measure to investigate gene network in relation to WAS gene. The IG measure successfully
discovered biologically known findings, indicating its validity. With its simplicity of procedure
and its flexibility of investigating a fine structure, we consider that the IG measure is useful
in analyzing microarray expression data, for example, discovering a gene interaction hidden
in data and selecting candidate genes for further biological investigation.

Let us briefly comment on limitation and future studies of the present study. First, while
a generalization of the three and four variable cases treated here is assured theoretically and
also demonstrated in neural spike firing data (Amari, 2001; Nakahara and Amari, submitted),
we should try to examine the method on expression data, using a larger size of the model.
Second, one of nice properties of graphical model is a systematic treatment of directed and
undirected graphs, which makes graphical models user-friendly. Estimated directed graphs
help users interpret the estimated dependency, sometime causality of variables in relation to

8Description of quantified selection (using A;) is omitted here. Also, CDC42, the most famous protein that
activates WASP, was not included in the dataset.

9The COR values with two groups of small and large ARHG values (i.e. < 0.5 and > 0.5 values) are —0.28
and 0.09, respectively.
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biological knowledge. While the IG measure is excellent in investigating a finer structure of
gene interaction, so far, it is difficult to interpret estimated IG measure as directed graphs, or
causality. This issue remains for future.
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