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Abstract

Motivation� Given a vast information of gene expression data� it is critical to develop
a simple and reliable method to investigate a �ne structure of gene interaction� We show
how an information geometric measure help us this investigation�

Results� We introduce an information geometric measure of the log linear model
of binary random vector� making connection to graphical models� By representing gene
interaction through this model� we can investigate a �ne structure of gene interaction�
By using speci�c examples� we provide a detailed description of the method� To validate
the method� we also demonstrate that the method can successfully discover biologically�
known �ndings� with respect to Wiskott�Aldrich Syndrome Protein� using a microarray
dataset of human tumor cells�

Contact� hiro�brain�riken�go�jp

� INTRODUCTION

Experiment using DNA microarray chips provides us with a vast amount of information on
gene expressions through mRNA transcripts simultaneously� One of central challenges is to
discover relationship of gene expression data� or gene network� hidden in data� To infer such
a gene network� there have been strong interest in applying graphical models�

Graphical models� including Bayesian networks� are a general framework in statistics and
computer science to investigate interaction of random variables �Pearl� ����� Lauritzen� ����	�
We have seen� for example� that hierarchical clustering� a popular method in 
eld� is useful in
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inspecting gene networks �Eisen et al�� ����	� Graphical models are in principle more powerful
than hierarchical clustering in that the former can treat a 
ner structure of interactions among
variables than the latter because the latter only use the second�order �pairwise	 interaction
among variables� To investigate a gene network� we need to know not only pairwise but also
the third�order �triplewise	 and higher�order interactions� As a simplest situation� we may
ask whether one gene may co�regulate two other genes or not and this is a question of the
third�order �and higher	 interaction� not of the second�order� While theories of graphical
models have been developed in past decades� also with ongoing current progress �Pearl� �����
Whittaker� ���
� Lauritzen� ����	� analyses by graphical models have recently proven to be
very useful in analyzing gene expression data �Friedman et al�� �


� Pe�er et al�� �

�	�

The present study somewhat follows their footsteps in gene expression analysis� however�
by using di�erent perspective from the information geometry framework �Amari and Nagaoka�
�


	 and focusing on a speci
c simple probability model�Amari� �

�� Nakahara and Amari�
�

�� Nakahara and Amari� submitted	� namely a log linear probability model of a binary
random variable vector �Bishop et al�� ����	� Interestingly� this model corresponds� roughly�
to graphical log�linear model� called in the graphical model framework �Whittaker� ���
	�
although the former contains the latter because the latter has more constraints �Whittaker�
���
	� Using the information geometry perspective� we can fully utilize the properties of the
model and show that this model has a signi
cant merit in analyzing gene expression data�

The present paper is organized as follows� First� we brie�y make a connection of an
information geometric measure of the log�linear model with graphical models in a general
case� Second� due to limited space� we limit ourselves to discuss the measure in the case of
three and four variables so that we can provide detailed explanation� While our discussion and
demonstration in the present paper mainly treat those cases� we emphasize that the scope of
this approach can be easily extended� as already demonstrated in analysis of multiunit neural
spike data �Nakahara and Amari� submitted	� It is very simple to re�represent microarray
data by the information geometric measure� which is one of the merits of our method� The
re�representation of the measure already helps us look into gene interaction� We can further
quantify the measured values in a simple manner� too� Third� we touch upon our preprocessing
before treating real data and show how gene interaction of real�value in microarray data can
be represented through the log linear model of a binary random vector� Fourth� we show its
validity using a microarray dataset of human tumor cells �Khan et al�� �

�	 and investigate a
function of Wiskott�Aldrich Syndrome Protein �WASP	 on other genes in phagocytosis� Our
method reveals a function of WASP on other genes� Finally� discussion follows�

� METHODS

��� Preliminaries

Here� we make a brief remark on graphical models relevant for the present study� using undi�
rected graphs� A key concept of graphical models is Markov independence� or conditional
independence� Graphical models try to estimate dependency of random variables� utilizing
graph relation �i�e� nodes and edges	� where nodes and edges represent random variables and
their dependency� respectively� To measure the dependency� graphical models utilize condi�
tional independence� Each variable Xi is independent from other variables� once the values
of its �parents�� which are random variables directly connected to Xi by edges� are 
xed� To
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illustrate this point� let us divide a random variable vector Xn � �X�� ���� Xn	 into three terms�
�X�� pa�X�	� npa�X�		� where pa�X�	 is parents of X� and npa�X�	� which is variables other
than Xi and pa�Xi	� We then have conditional independence�

P �X�jX�� ����� Xn	 � P �X�jpa�X�	� npa�X�		 � P �X�jpa�X�		�

When two variables� say X� and X�� are independent� the two variables do not have an edge
between them� A simplest example of three variable case is given in Fig � A� where two
variables �X�� X�	 are independent conditionally to the other X�� so that we have

P �X�� X�jX�	 � P �X�jX�	P �X�jX�	�

Thus� edges indicate dependency between random variables �i�e� nodes	� based on conditional
independence� We show below how conditional independence is translated into information
geometric measures� also indicating the merits of using this measure�

In graphical models� in general� there is a process of �estimating graph�� We usually start
with assuming a graph structure� then use data to validate the structure� that is� add and�or
delete nodes and edges �variables and dependency	 and 
nally obtain estimated graphs� We
show below how this validation can be performed in use of the information geometric measure�

��� Log linear model and information geometric measure

Here� we brie�y mention a most general log linear model of a binary random variable vector�
See �Amari� �

�� Nakahara and Amari� submitted	 and also �Bishop et al�� ����	 for details�

After preprocessing �see Section ���	� we represent variability of gene expression �through�
the probability distribution of a binary random vector variable� For a moment� let us assume
that we obtain a n�dimensional binary random variable vector� X � �X�� � � � � Xn	� Each Xi

represents each gene and becomes 
 or �� which can be considered to indicate that Xi is not
expressed or fully expressed� respectively� in each microarray experiment��

Any probability distribution of binary random vector can be exactly expanded by log linear
model� Let p � p�x	�x � �x�� � � � � xn	 � xi � 
� �� be its probability� Each p�x	 is given by �n

probabilities

pi����in � Prob fX� � i�� � � � � Xn � ing � ik � 
� �� subject to
X

i����� �in

pi����in � �

and hence� the set of all the probability distributions fp�x	g forms a ��n � �	�dimensional
manifold Sn� One coordinate system of Sn is given by the expectation parameters�

�i � E �xi� � �i � �� ��n	 �ij � E �xixj� � �i � j	� ���� ������n � E �xi � � �xn�

which have �n � � components� This coordinate system is called ��coordinates in Sn �Amari
and Nagaoka� �


	� On the other hand� p�x	 can be exactly expanded by

log p�x	 �
X

�ixi �
X

i�j

�ijxixj �
X

i�j�k

�ijkxixjxk � � � �� �����nx� � � �xn � ��

�In our analysis
 we do not actually take a gene expression as binary
 as discussed in Section ��

 � later�
For presentation simplicity
 however
 we describe a gene expression as binary till Section ��
�
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where the indices of �ijk� etc� satisfy i � j � k� etc and � is a normalization term� corre�
sponding to � log p�x� � x� �� ��� � xn � 
	� All �ijk� etc�� together have �

n � � components�
forming another coordinate system� called ��coordinates �Amari and Nagaoka� �


	�

Given gene expression data� both of the above coordinates can be easily estimated in prin�
ciple� Information geometry assure us that the ��coordinates and ��coordinates are dually
orthogonal coordinates� The properties of the dually orthogonal coordinates remarkably sim�
pli
es investigation on dependency of random variables� While details of a general case can
be found in �Amari� �

�� Nakahara and Amari� submitted	� we show the merits of the dual
coordinates� using speci
c examples below� in the present paper�

In a most general case� a n�dimensional binary random vector results in �n�� dimensional
coordinates� In microarry data� n may become O��
�	 so that we would never have enough
samples to estimate all coordinates� In practice� hence� we should not use an above full model
as but restrict our model� based on domain knowledge and�or by some other approaches �Naka�
hara and Amari� submitted	� Any choice of graph structure� or any dependency� in graphical
model framework corresponds to one of restricted models �Whittaker� ���
	� This is another
reason why we chose to use some speci
c examples for illustration below�

��� Conditional independence in information geometric measure�

Three variable case

In the next few sections� we illustrate use of the information geometric measure and its relation
to graphical models in case of three and four variables� Remember that a generalization of
these examples is possible� which we hope would be self�evident in each example� For three
variable case� the log linear model is given by

log p�x	 �
X

�ixi �
X

�ijxixj � ����x�x�x� � �� ��	

It is easy to compute all coe�cients� i�e� easy to estimate them from gene expression data�

�� � log
p���
p���

� �� � log
p���
p���

� �� � log
p���
p���

� ��� � log
p���p���
p���p���

� ��� � log
p���p���
p���p���

�

��� � log
p���p���
p���p���

� ���� � log
p���p���p���p���
p���p���p���p���

� � � � log p���� ��	

Any distribution of the three binary random variable� or any type of dependency of them� can
be represented by this ��coordinates� which we denote by

� � ���� ��� ��� ��� ��� ��� ��	 � ���� ��� ��� ���� ���� ���� ����	�

Let us go back to an example shown in Fig � A� where the three variables �now binary
ones	 have a relation P �X�� X�jX�	 � P �X�jX�	P �X�jX�	� This relation can be represented
in terms of ��coordinates as follows�

Theorem ��

P �X�� X�jX� � 
	 � P �X�jX� � 
	P �X�jX� � 
	 �� ��� � 


P �X�� X�jX� � �	 � P �X�jX� � �	P �X�jX� � �	 �� ��� � ���� � 


Obviously� by this theorem� we realize

P �X�� X�jX�	 � P �X�jX�	P �X�jX�	�� ��� � ���� � 
� ��	
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Figure �� A Example of three variables B When ��� � ���� � 
 a� X� � 
 b� X� � �� A
rectangle is to indicate that a value of the random variable is 
xed �as for X�	� while a circle
is to indicate a random variable� C Example of four variables

Hence� ��� � ���� � 
 is equivalent to the relation shown in Fig � A��
Theorem �� however� tells us more than Eq � does� Theorem � indicates that by inspecting

the measurement of ���� ���� from gene expression data� we can directly infer a gene interaction�
There is a distinctive meaning of ��� and ����� Recall that X� � 
 indicates that the gene
X� was not expressed� whereas X� � � indicates that the gene X� was expressed �also see
Preprocessing section	� Hence� if we 
nd ��� � ���� � 
 in data� we see that two genes� X� and
X�� are independent �conditionally to X�	� regardless of whether X� � 
 or � �� On the other
hand� for example� if we 
nd ��� � 
 but ���� �� 
� two genes� X� and X�� are �conditionally to
X�	 independent only when the gene X� is not expressed �Fig � B a	 but� more importantly in
gene data analysis� that X� and X� become dependent when the gene X� is expressed �Fig �
B b	� This is very useful information� for example� to see an e�ect of the gene X� on the
other two genes� Furthermore� the sign of ����� positive or negative� indicates that the gene
X� induces positive or negative� respectively� interaction between genes X� and X�� Note
that analysis of this type �i�e�� ��� � 
� ���� �� 
	 is not usually treated in graphical models
because such a type violates correspondence of graph relation with conditional independence
in graphical model framework �Whittaker� ���
	�

��� Quantifying estimates� three variable case

Next� we address how to quantify our estimates of ��coordinates� For example� is ���� � 
�

�
signi
cantly di�erent from zero or not� How about ���� � 
�� or �
� This question corresponds
to �validation of a graph structure� in graphical models and is an important question in the
information geometric measure as well� In statistical estimation of parameters for a probability
model of multiple random variables� in general� we have to take care of dependency between
random variables� because their dependency may lead to correlated estimation errors� for
example� which is why graphical models need to �propagate beliefs� �Lauritzen� ����	� With
such a care� we need to quantify signi
cance of its estimated values�

Dual orthogonality of �� and ��coordinates allows us to treat these issues in a fairly simple
manner� Let us 
rst write ��coordinates �whose de
nition is similar to those in Preliminaries
section	 in this three variable case as follows�

� � ���� ��� ��� ��� ��� ��� ��	 � ���� ��� ��� ���� ���� ���� ����	�

Note that estimation of these coe�cients is very easy� Estimation errors of the dual coordi�
nates are orthogonal to each other� in other words� we can estimate any subset of ��coordinates

�We assume ��� �� �� ��� �� � so that there are edges between X� and X�
 between X� and X� in Fig � A
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independent from the complementary subset of ��coordinates� Second� quanti
cation of esti�
mated values can be easily done via the Fisher information matrix of the mixed coordinates
and due to the dual orthogonality� this Fisher information matrix has a very simple structure�
resulting in easy procedure of quanti
cation �Nakahara and Amari� submitted	�

To use the dual orthogonality of the �� and ��coordinates� we now introduce the mixed
coordinates as follows�

�k � ���� ���� ��	 � ���� ���� �k��� �k� �k	����� ��	

Each of these mixed coordinates �k � �� ���� �	 is useful to single out di�erent dependency�
Here� we only explain the case of �� in detail �also see the end of this section	� �� is useful
to single out the triplewise dependency�interaction i�e�� �� � ����� regardless of the 
rst�order
and the second�order modulation of variables� which are represented by ���� �����	�

Suppose our estimate of expression data is given by ��� � ������ � ����� ���	 and suppose we like
to investigate whether �� is di�erent from zero� Then� our null hypothesis� denoted by ���� is
given by ��� � ������ � ����� �

�
�	� where ��� � 
� Di�erence in ��� i�e�� ����� � ����� � ���� by itself�

does not attain a nature of distance� This is because the metric varies at each probability
distribution p�x� ��	 �Amari and Nagaoka� �


	� We can� however� quantify the discrepancy
between p�x� ���	 �null hypothesis	 and p�x� ���	 �our estimate	 by KL divergence�

D�����
���	 �

X

x

p�x� ���	 log
p�x� ���	

p�x� ��	
�

The KL divergence works as a quasi�distance� We have� asymptotically��

�ND�����
���	 � I����

�

�	�
����� � �����	

� � I����
�

�	�
�����	

� � I����
�

�	�
���	

� � ��

where N is the number of samples� The right hand side is a quadratic approximation of
the left hand side� I����	 indicates the Fisher information matrix� with dimension � � �� of
the mixed coordinates at the point ��� in the probability space� Generally speaking� with
this quadratic approximation� we need to use a general Riemannian metric� i�e�� of the formP�

i�j
� gij�i�j� In our case� however� because of dual orthogonality� we only need to use a single

component� I����
�

�	 in I����	 � �Iij��
�

�		 �i� j � �� ���� �	 and furthermore� have a simple formula
of I����

�

�	 �Nakahara and Amari� submitted	� Hence� we can easily quantify the estimation of
����� We can then follow the formulation of the likelihood ratio test and even get p�value by
�� 	 	���	� where 	��k	 denotes 	� probability distribution with a degree of freedom� k�

In a similar manner� we can inspect any of �k �k � �� ���� �	 by using �k� Furthermore�
when we like to inspect two � parameters together� say �� and �� together

�� we can formulate
the mixed coordinates such as ��� � ���� ��� ��� ��� ��� ��� ��	� Then� we can again use the
dual orthogonal property to single out the two term together independent from other terms�
Similarly� we can single out any subset of �� so that we can easily inspect gene network
structure and single out interesting dependency�

�Below
 we similarly use notation �k
 corresponding to �k �e�g� Fig ��
�For example
 this may be interesting in inspecting �� � �� � ��� � ���� � � in relation to Theorem �
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��� Conditional independence� Four variable case

Here� we brie�y illustrate a case of four variables� hoping to provide a sense of a general scope
of our approach� The log linear model now becomes

log p�x	 �
X

�ixi �
X

�ijxixj �
X

�ijkxixjxk � �����x�x�x�x� � �� ��	

We use an example shown in Fig � C� First we have

P �X�� X�� X�jX�	 � P �X�jX�	P �X�jX�	P �X�jX�	

�� P �X�� X�jX�� X�	 � P �X�� X�jX�	 and P �X�� X�jX�	 � P �X�jX�	P �X�jX�	

We can relate the above quantities to ��coordinates by inspecting each term in the above
right hand side identity� Note the following relation�

P �X�� X�jX� � 
� X�	 � P �X�� X�jX� � 
	 �� ��� � ��� � ���� � 


P �X�� X�jX� � �� X�	 � P �X�� X�jX� � �	 �� ��� � ���� � ��� � ���� � ���� � ����� � 


Once these conditions are satis
ed� we have� similarly to Theorem ��
Theorem ��

P �X�� X�� X�jX� � 
	 � P �X�jX� � 
	P �X�jX� � 
	P �X�jX� � 
	

�� ��� � ��� � ���� � 
� ��� � 


P �X�� X�X�jX� � �	 � P �X�jX� � �	P �X�jX� � �	P �X�jX� � �	

�� ��� � ���� � ��� � ���� � ���� � ����� � 
� ��� � ���� � 


The above relation tells us� in terms of ��coordinates� more than the relation of P �X�� X�� X�jX�	 �
P �X�jX�	P �X�jX�	P �X�jX�	 � similarly to discussion in Section ���� Thus� we can again infer
details of gene network by inspecting ��coordinates estimated from data� We may infer recur�
sively a larger size of gene network in a similar manner� although it is certainly constrained
with the limitation of number of samples in general� We also only mention that quanti
cation
of estimated value can be dome in a similar manner to Section ����

Let us remark on the relation between three and four variable cases� using example of ����� �
log p���p���p���p���

p���p���p���p���
� which is of the three variable �Eq �	� and of ����� and ������� which are from

the four variable case �Eq �	� We can easily compute� for example� ����� � log p����p����p����p����
p����p����p����p����

�

Notably� we have ����� �� ������ This is because the three variable model ignores the fourth
variable in�uence on the three variables� Next� by inspection� we get a relation ������ � ����� �
��
���j�� where we de
ned ��

���j� � log p����p����p����p����
p����p����p����p����

� By comparing ����� and ��
���j�� we see

that the two terms together� ������ � ������ indicates the third�order interaction of �X�� X�� X�	
conditional to X� � �� whereas ����� indicates this interaction regardless of the value of X��

��� Preprocessing

Here we discuss our preprocessing procedure� which takes two steps� First� each sample data is
normalized by multiplying because each experiment has been a�ected by di�erences in various
factors �e�g� di�erent amounts of initial mRNA	 and these factors are considered to have�
roughly� proportional e�ects� After this normalization� we discard the genes whose expression
of all samples are very low� i�e�� less than a certain threshold� which corresponds to presumption
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that such genes have no expression in all samples and hence� are of no interest� In fact� this
step is already taken in the data used in the present study�

Provided the above procedure of obtaining data by itself� we consider the gene expression
data as indicating only the relative degree of expression� using real values� compared with a
process of an original cell �or original biological tissue	� It is then more visible to assign 

to the null expression and � to the full degree of expression to quantify the relative degree
of expression� This is the second step� We re�represent the degree of gene expression as in
�
� �� and then represent interaction of genes �through� a log linear model of a binary random
vector� In other words� we do not regard gene expression by itself as binary� We only use the
log linear model as a means to represent interaction of genes� This point is important because�
for example� some researches are concerned with whether binary Boolean network could be
enough to fully represent gene interaction �Akutsu et al�� �


	�

How then can we convert a real value of each gene into a value bounded in �
� ��� There can
be several ways of this quanti
cation� One way is to use order statistics� The other� used in
the present study� is to normalize those relative degree of expression� Now let us denote values
of gene expression of i�th gene by �xi�� xi�� ���� xiN 	� where each xij has a real value and N is
the number of samples� For this purpose� we obtain the mean and variance of �xi�� xi�� ���� xiN 	�
denoted by 
i and ��i � and convert xi to zi by zi �

�p
����

i

R xi
��

expf��t � 
i	
�����i gdt� Now

each of �zi�� zi�� ���� ziN	 expresses a relative degree� bounded by �
� ��� Using these zis� for
example� p��� is computed by

p��� �
�

N

NX

j

z�j��� z�j	��� z�j	�

In a similar manner� all pijk �and any pi�i����in	 can be computed� so that it is easy to obtain
both �� and ��coordinates after this preprocessing�

� RESULTS

The present study investigated a microarray dataset of human tumor cells �Khan et al�� �

�	�
available from http���www�nhgri�nih�gov�DIR�Microarray�Supplement�� The data set� con�
tains �� microarray experiments of ���
� genes� We focus on analyzing the gene network
associated with Wiskott�Aldrich Syndrome Protein �WASP	� Wiskott�Aldrich syndrome� char�
acterized by thrombocytopenia� eczema and immunode
ciency� results from mutation in WAS
gene� The product of WAS gene� i�e� WASP� plays a key role in phagocytosis �see below	�

We 
rst took all possible combination of three genes� one of which is 
xed as WASP
and we denote each set of three genes by �X�� X�� X�	 � �X� Y�WAS	� After preprocessing
described above� we estimated their interaction in terms of ��coordinates and hence� got seven�
dimensional vector � for each set of three genes� Here we mostly inspect ��� and �����

� These
two � components could reveal the e�ect of WAS expression on other two genes �Fig � B	�

Figure � shows the results of estimation� To help grasp nature of WAS �Fig � A	� we also
plotted the values by taking X� � COL�A� gene from the same data set �Fig � B	� COL�A�

�Gene names were abbreviated according to UniGene clusters in the following description�
�Indeed
 it is necessary to investigate all components to fully determine the gene structure of each set of

genes but due to limited space
 we cannot discuss all of them� Still
 we make some brief comments on other
components when we discuss speci�c examples of the set later�
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gene is biologically less�interacting because it is for structural protein �collagen 
ber	� not for
regulatory protein� Furthermore� we also generated random data� using independent Gaussian
distributions� and plotted the estimated values �Fig � C	�

It is clear� even by simply looking at the shape of distributions� that both of WAS and
COL�A� �Fig � AB	 have interaction di�erent from a completely independent one �Fig � C	�
while WAS still has interaction slightly di�erent from COL�A� �Fig � B	� This observation
becomes more clear when we plot �� ����	 and �� �����	 separately in histogram �Fig � AB	
and their quanti
ed values� �� and �� separately �Fig � CD	� WAS and COL�A� have almost
the same second�order interaction �as a distribution	� yet di�erent from a random one �Fig �
BD	� WAS has the third�order interaction di�erent from both COL�A� and a random one�
while these two have almost the same third�order interaction �Fig � AC	�

To demonstrate the utility of the measure� we chose to investigate the set of genes that
has ��� � 
 but a large ���� in the above distribution �see Section ���	� First� we collected the
set of genes that has �� values less than 
�


��� corresponding to ��� percent range around
�� � 
 under 	���	� There remained �roughly	 �����
� sets of genes among original �roughly	
����� �
� sets of genes� Then� we looked into the value of �� in this pool of ���� �
� sets�

The set of genes with the largest �� is shown in Fig � A� where the value of other two genes�
TLOC� and EST� are plotted in scatter�gram with the WAS values indicated by color� Note
that we are now discussing real values of three genes �bounded in �
� �� by our preprocessing	�
As the value of WAS increases from 
 to �� the correlation �COR	� between the other two
genes emerges through a positive ����� We may also note in Fig � A that as the WAS value
changes� the each mean of the two genes seems to change �e�g� the EST values with small

�As a reference
 when we compute the COR by separating scattered points with a threshold of ��� WAS
value to two groups
 the COR of the points with � ��� WAS value and those with � ��� was ����� and ����


respectively� The COR values in the following text and �gures are calculated similarly�
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WAS values tend to be small	� This is because changes in the WAS value a�ect the marginal
distribution of each gene through the terms such as ���� ��� etc� We can easily quantify such
an e�ect as well �not shown here	�
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There is the set of genes �Fig � B	� among the top 
ve largest ��� that re�ects a biologically�
known relation� which we consider as supportive for the method�s validity� Let us describe the
relation shortly� WASP plays an important role in phagocytosis �Higgs and Pollard� �


� May
and Machesky� �

�	� WASP is activated by receptors on the cell surface that detect things to
take up� Activated WASP interacts with Arp ��� complex� which assembles actin 
laments so
that plasma membrane invagination occurs� Then� phagosome� fused with lysosomes� forms
phagolysosomes in which the engulfed material is killed and digested� Digested peptides are
bound with HLA�DM protein and then transported to the cell surface for presentation to T
cells �Ramachandra et al�� ����	� The fact that single mutation in WAS gene causes Wiskott�
Aldrich syndrome indicates that WASP is indispensable in this whole process�

Our method indicates that the COR between ARPC� �Arp ��� complex	 and HLA�DMA
emerges as WASP becomes expressed �Fig � B	� This corresponds to the above description
in that WASP is indispensable in phagocytosis� in which ARPC� and HLA�DMA participate�
Furthermore� let us observe in Fig � Ba that the scattered points tend to align vertically
around small HLA�DMA values� In other words� given small WAS values� we observe that ��	
the ARPC� values are rather scattered and ��	 that the HLA�DMA values tend to concentrate
in small values� This ��	 may correspond to the known fact that Arp ��� complex can be
activated by other proteins than WASP �May� �

�	� To the author�s knowledge� there is
no biological evidence for a direct relation between WASP and HLA�DMA� With ��	� yet�
our analysis suggest that WASP may have a tight relation to HLA�DMA expression� which is
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further supported by the observation that the HLA�DMA values tends to be large� when the
WASP value is large �Fig � Bb	�

We then investigate the gene triplet �X�� X�� X�	 ��HLA�DMA� ARPC�� WAS	� using the
four variable model� We investigated the set of gene� in each of which we 
xed X�� X�� X�

as above and assigned a gene to X� from the rest of genes� Based on Theorem �� we chose
to investigate the set of genes that satis
es ��� � ��� � ���� � ��� � 
 and ���� � ���� � 
�
After collecting the set of genes that satis
es the above� we sorted all the sets in order of
���� � ������ The set with the tenth largest of ���� � ����� is given by X� �ARHG

�� Members
of Rho�subfamily proteins are known to activate WASP and ARHG is one of them� Hence�
we should expect that the e�ect of WASP on HLA�DMA and ARPC� would be enhanced by
presence of ARHG� because the more ARHG� the more likely WASP is activated and because
WASP can be activated without ARHG� e�g� by other members of Rho�family�

We observed the corresponding relation by the information geometric measure �Fig �	�
When the WAS values are small� the COR between ARPC� and HLA�DMA is rather weak
and is not a�ected by the degree of ARHG expression� �Fig � A	� On the other hand� when
the WAS values are large� the COR exists �Fig � Bb	 and furthermore� the COR is stronger
when ARHG is expressed �Fig � Bb	 than when ARHG is not expressed �Fig � Ba	�

� DISCUSSION

We have shown how the information geometric �IG	 measure of the log linear model of a binary
random vector can be applied to analyze gene networks� using the three and four variable
cases and also making correspondence to graphical model framework� We re�represented gene
interaction� where gene expressions are given by real values� �through� this log linear model
in terms of ��coordinates� i�e�� the IG measure� This re�representation by the IG measure
is very simple� which is one of the strengths of our method� We indicated that each term
of the IG measure can have a distinct meaning and showed� using such a distinct meaning�
that we can investigate a 
ne structure of gene interaction� some of which would not be
treated in graphical model framework� A method of quantifying the estimated IG measure
is also presented� Using a dataset of human tumor cells� we demonstrated the validity of IG
measure to investigate gene network in relation to WAS gene� The IG measure successfully
discovered biologically known 
ndings� indicating its validity� With its simplicity of procedure
and its �exibility of investigating a 
ne structure� we consider that the IG measure is useful
in analyzing microarray expression data� for example� discovering a gene interaction hidden
in data and selecting candidate genes for further biological investigation�

Let us brie�y comment on limitation and future studies of the present study� First� while
a generalization of the three and four variable cases treated here is assured theoretically and
also demonstrated in neural spike 
ring data �Amari� �

�� Nakahara and Amari� submitted	�
we should try to examine the method on expression data� using a larger size of the model�
Second� one of nice properties of graphical model is a systematic treatment of directed and
undirected graphs� which makes graphical models user�friendly� Estimated directed graphs
help users interpret the estimated dependency� sometime causality of variables in relation to

�Description of quanti�ed selection �using �k� is omitted here� Also
 CDC��
 the most famous protein that
activates WASP
 was not included in the dataset�

	The COR values with two groups of small and large ARHG values �i�e� � ��� and � ��� values� are �����
and ����
 respectively�



RIKEN BSI BSIS Technical report No����� ��

biological knowledge� While the IG measure is excellent in investigating a 
ner structure of
gene interaction� so far� it is di�cult to interpret estimated IG measure as directed graphs� or
causality� This issue remains for future�
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