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Abstract

Motivation: Given the vast amount of gene
expression data, it is essential to develop a
simple and reliable method of investigating
the fine structure of gene interaction. We
show how an information geometric measure
achieves this.

Results: We introduce an information
geometric measure of binary random vectors.
We show how this measure can be used to re-
veal the fine structure of gene interaction. In
particular, we propose an iterative procedure
by using the information geometric measure
(called IPIG). The procedure finds higher-
order dependencies which may underlie the
interaction between two genes of interest. To
demonstrate the method, we investigate the
interaction between the genes, XBP-1 and
IGHM, using data from human acute lym-
phoblastic leukemia cells. The method suc-
cessfully discovered biologically-known find-
ings and also selected other genes as hidden

∗corresponding author; tel: +81-48-467-9663; fax
+81-48-467-9693; hiro@brain.riken.go.jp

causes to constitute the interaction.
Contact: hiro@brain.riken.go.jp

1 INTRODUCTION

Experiments using DNA microarray chips pro-
vide us with a vast amount of information on
gene expressions through mRNA transcripts.
One of the central challenges is to discover
the relationships among gene expression, or
gene interactions, hidden in data.

Hierarchical clustering is perhaps the most
popular method for this purpose and is shown
to be useful in inspecting gene networks (Eisen
et al., 1998). This method, however, relies
entirely on the second-order interaction (i.e.
pairwise interaction) to infer the gene inter-
action, while having the advantage of the rel-
atively low computational cost. To investi-
gate a gene network, we need to know not
only pairwise but also the third-order and
higher-order interactions. As a simple exam-
ple, we may ask whether one gene may regu-
late two other genes or not. This is a question
of the third-order (and higher) interaction,
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not of the second-order. Recently, graphical
models (GMs), including Bayesian networks,
have been proven to be useful in inspecting
a gene network(Friedman et al., 2000; Pe’er
et al., 2001). GMs are a general framework
in statistics and computer science to investi-
gate interaction of random variables (Pearl,
1988; Lauritzen, 1996) and can investigate
the higher-order interaction of a gene net-
work, using a graphical structure under the
strong definition of conditional independence
(Whittaker, 1990).

The present study, based on the infor-
mation geometry framework (Amari and Na-
gaoka, 2000), focuses on a specific simple prob-
ability model, a probability of a binary ran-
dom variable vector and its log linear ex-
pansion (Bishop et al., 1975; Akutsu et al.,
2000). With this model, we investigate the
gene interaction under the weak definition of
conditional independence and thereby show
that our approach can investigate the finer
structure of gene interaction. Specifically, we
present an iterative procedure (called IPIG)
to decompose a pairwise interaction of the
two genes into the elements of higher-order
interactions. This procedure is simple and
easy to implement, once we fully utilize the
properties of the model(Amari, 2001; Naka-
hara and Amari, 2002a; Nakahara and Amari,
2002b). This procedure would have strong
merit in microarray data analysis.

The present paper is organized as follows.
First, we summarize the properties of the in-
formation geometric measure. Second, we
propose the iterative procedure, IPIG, to uti-
lize the measure to investigate gene interac-
tion. Third, we touch upon our preprocess-
ing by which we convert the real-valued gene
expressions in microarray data to the infor-
mation geometric measure. Fourth, we show
its validity using a microarray dataset of hu-
man acute lymphoblastic leukemia cells (Yeoh
et al., 2002) and investigate an interaction of
two genes, XBP-1 and IGHM1. Finally, a dis-

1Gene names below are abbreviated according to

cussion follows.

2 METHODS

2.1 Conditional independence

We begin by discussing two definitions, namely
weak and strong definitions, of conditional
independence. For simplicity, let us consider
an example of three variables where two vari-
ables (X1, X2) are independent conditionally
to the other X3. Then we write

P (X1, X2|X3) = P (X1|X3)P (X2|X3).

The strong definition of conditional indepen-
dence asserts that the above equation should
hold regardless of the values taken by X3,
whereas the weak definition concerns whether
the above relation holds or not, given a spe-
cific value taken by X3. That is, when X3 is
binary, taking 0 or 1, under the weak def-
inition, we would ask, separately, whether
P (X1, X2|X3 = 0) = P (X1|X3 = 0)P (X2|X3 =
0) holds and/or P (X1, X2|X3 = 1) = P (X1|X3 =
1)P (X2|X3 = 1) holds, whereas we say this
conditional independence holds under the strong
definition only when both equations holds.

2.2 Information geometric mea-

sure

Here, we briefly mention a general log lin-
ear model of a binary random variable vec-
tor. Any probability distribution of binary
random vectors can be exactly log-expanded.
Thus, we emphasize that when we say the log
linear ’model’, it refers to this exact log linear
expansion, not to any kind of approximated
expansion. See (Amari, 2001; Nakahara and
Amari, 2002b) and also (Bishop et al., 1975)
for further details.

Let us denote an n-dimensional binary
random variable vector byX = (X1, · · · , Xn).
Each Xi represents one gene and takes the

UniGene standards
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values 0 or 1, indicating that Xi is not ex-
pressed or is fully expressed, respectively, in
each microarray experiment. In general, the
gene expressions in microarray data are real
values (i.e. taking any values in [0, 1] in the
above notation). For the moment, however,
let us assume that the gene expression, Xi, is
binary, for presentation simplicity, till Sec 2.6 2.

Let p = p(x),x = (x1, · · · , xn), xi = 0, 1,
be its probability. Each p(x) is given by 2n

probabilities

pi1···in = Prob {X1 = i1, · · · , Xn = in} ,
ik = 0, 1, subject to

∑

i1,··· ,in
pi1···in = 1

and hence, the set of all the probability dis-
tributions {p(x)} forms a (2n − 1)-dimensional
manifold Sn. One coordinate system of Sn

is given by the expectation parameters,

ηi = E [xi] , ηij = E [xixj ] , (i < j), ...,

η12···n = E [x1 · · ·xn]

which have 2n − 1 components. This coordi-
nate system is called η-coordinates in Sn (Amari
and Nagaoka, 2000). On the other hand,
p(x) can be exactly log-expanded by

log p(x) =
∑

θixi +
∑

i<j

θijxixj +

∑

i<j<k

θijkxixjxk + ..+ θ1···nx1..xn − ψ, (1)

where the indices of θijk, etc. satisfy i <
j < k, etc and ψ is the normalization term,
corresponding to − log p(x1 = x2 =, ... =
xn = 0). The terms θijk together have 2n −
1 components, forming another coordinate
system, called θ-coordinates (Amari and Na-
gaoka, 2000). Each term can be easily com-
puted (see Sec 2.3).

Given gene expression data, both of the
above coordinates can be easily estimated in

2In our analysis, we do not actually take gene
expression to be binary. Section 2.6 describes how
we convert real-valued data to the coordinates of the
log linear model.

principle. Information geometry assures us
that the η-coordinates and θ-coordinates are
dually orthogonal coordinates. This prop-
erty remarkably simplifies an investigation
on dependency of random variables, as shown
below.

In a most general case, a n-dimensional
binary random vector results in 2n − 1 di-
mensional coordinates. In microarray data,
n may become O(104) so that we are un-
likely to have enough samples to estimate
all coordinates. Any method needs to use
some assumptions to overcome the limited
number of trials. For example, hierarchi-
cal clustering assumes only the pair-wise in-
teraction. GMs use the strong definition of
conditional independence, limit candidates of
graph structure, incorporate prior knowledge
(i.e., Bayesian) and so on. Similarly, in our
approach, we should not use a full model but
restrict the model in some ways (Nakahara
and Amari, 2002b). The IPIG proposed be-
low is one such approach.

2.3 Conditional independence in
information geometric mea-

sure

We discuss here the relation of conditional in-
dependence (under the weak definition) with
the information geometric measure, i.e., θ-
coordinates in Eq 1. One of the key advan-
tages to use the information geometric mea-
sure is that it allows a succinct expression of
the weak conditional independence, as shown
in Theorem 1 below.

Let us divide the indices, i = 1, ..., n,
into the three mutually exclusive, non-empty
subsets, denoted by (A,B,C). Below, we
indicate any elements of each of A,B etc
by small letters (e.g., a ∈ A). Given X =
(X1, · · · , Xn), we use the notation XA, which
refers to the set of Xi, whose indices belong
to A. Then, we have X = XA ∪ XB ∪ XC .

3



Consider the following equation,

P (XA, XB|xC) = P (XA|xC)P (XB|xC),
(2)

where we used xC , instead of XC , to indicate
that we consider the above equation with
respect to a specific value of XC , i.e., xC .
Given xC , we divide the indices of C into
two terms,

C0 = {i; xi = 0, i ∈ C}, C1 = C − C0. (3)

Each component of the θ-coordinates (Eq 1)
corresponds to the set of indices (e.g., θ12457

corresponds to the set of indices {1, 2, 4, 5, 7}).
Using this correspondence, We now define
the subset of θ-coordinates as follows,

Θ(A,B;C0) = {the components whose

indices include a, b but not c0}. (4)

Then, we have
Theorem 1
Eq 2 ⇐⇒ ∑

θ∈Θ(A,B;C0)
θ = 0.

Proof is omitted (see (Whittaker, 1990)
for the different but related theorem and its
proof). The above theorem is given with a
simplest case, i.e, Eq 2 provided X = XA ∪
XB ∪XC , for the presentation simplicity. It
suffices for the present paper. The general-
ization is possible. For example, when there
are more than two conditioned variables, e.g.,
P (XA, XB, XC |xD) = P (XA|xD)P (XB|xD)
P (XC |xD), we can prove the similar condi-
tion recursively. Also, the condition in case
of XA ∪XB ∪XC ⊂ X can be derived simi-
larly.

2.3.1 Three variable case

For the three variable case, the log linear
model is given by

log p(x) =
∑

θixi +
∑

θijxixj +

θ123x1x2x3 − ψ.

Any distribution of three binary random vari-
ables can be represented by this model. It

is easy to compute all coefficients, i.e. easy
to estimate them from gene expression data,
e.g., θ1 = log p100

p000
, θ123 = log p111p100p010p001

p110p101p011p000
.

As an example, let us seek the condition of
P (X1, X2|x3) = P (X1|x3)P (X2|x3) with re-
spect to θ-coordinates. By Theorem 1, we
find θ12 = 0 and θ12 + θ123 = 0 in the cases
of x3 = 0 and x3 = 1, respectively.

Obviously, we then have P (X1, X2|X3) =
P (X1|X3)P (X1|X3) ⇐⇒ θ12 = θ123 = 0,
that is, the relation under the strong defi-
nition of the conditional independence. GMs
exploit this relationship.

In contrast, using θ-coordinates with the
weak definition, we can dig into a finer struc-
ture of gene interaction. θ12 and θ123 have
distinct meanings: θ12 indicates the interac-
tion of the two genes, X1 and X2, only when
X3 = 0, while θ12 + θ123 indicates the in-
teraction when X3 = 1. Furthermore, θ123

indicates the difference of the interaction be-
tween the cases of X3 = 0 and X3 = 1.
Hence, for example, if we find θ12 = 0 but
θ123 �= 0, two genes, X1 and X2, are (con-
ditionally to X3) independent only when the
gene X3 is not expressed (X3 = 0), but be-
come dependent when the geneX3 is expressed
(X3 = 1). This is useful for understanding
the effect of the gene X3 on the other two
genes. Finally, we note that their signs can
be understood naturally. For example, the
sign of θ12 indicates the positive or negative
interaction respectively when X3 = 0.

2.3.2 Four variable case

The log linear model now becomes

log p(x) =
∑

θixi +
∑

θijxixj +
∑

θijkxixjxk + θ1234x1x2x3x4 − ψ.

Let us consider one example,

P (X1, X2|x3, x4) = P (X1|x3, x4)P (X2|x3, x4)

for all four possible cases, i.e., (x3, x4) =
(0, 0), (0, 1), (1, 0), (1, 1). By Theorem 1, we
get four corresponding conditions, θ12 = 0,
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θ12 + θ124 = 0, θ12 + θ123 = 0 and θ12 + θ123 +
θ124 + θ1234 = 0 in this order. Comparison of
these values estimated from microarray data
provides us with valuable information. For
example, comparing the last two conditions,
we note that θ124 + θ1234 indicates the differ-
ence of the interaction of X1 and X2 between
two cases of X4 = 0 and = 1, conditional to
X3 = 1. We will use these features in an
iterative procedure below.

Let us remark on the relation between
three and four variable cases, using exam-
ple of θ3

123 = log p111p100p010p001

p110p101p011p000
for the three

variable model (and θ4
123 for the four vari-

able model). First, we must note θ3
123 �= θ4

123,
since θ4

123 = log p1110p1000p0100p0010

p1100p1010p0110p0000
. This is be-

cause the three variable model ignores the
fourth variable influence on the three vari-
ables. In general, a smaller model may miss
a finer interaction which can be represented
in a larger model. By inspection, we see
that θ4

123 indicates the third-order interaction
among (X1, X2, X3) conditional to X4 = 0,
while θ3

123 indicates the third-order interac-
tion regardless of the value of X4. We also
note that a simple calculation yields θ4

123 +
θ4
1234 = log p1111p1001p0101p0011

p1101p1011p0111p0001
so that it indi-

cates the third-order interaction conditional
to X4 = 1. Thus, there is a hierarchical na-
ture in the θ-coordinates with respect to the
number of variables.

2.4 Quantifying estimates

In statistical estimation of parameters for a
probability model of multiple random vari-
ables, in general, we have to take care of
dependency between random variables, be-
cause their dependency may lead to corre-
lated estimation errors. For example, this is
why GMs need to ’propagate beliefs’ and/or
‘estimate graph structure’ (Lauritzen, 1996;
Pearl, 1988). Taking into account such de-
pendencies, we need to quantify significance
of its estimated values. Here we show how we
can do so for the information geometric mea-
sure. Due to the limited space, here, we only

discuss a simple case in the three variable
model. See (Nakahara and Amari, 2002b)
for more details and also (Bishop et al., 1975;
Whittaker, 1990).

Let us first write θ- and η-coordinates;

θ = (θ1, .., θ7) = (θ1, θ2, θ3; θ12, θ13, θ23; θ123),

η = (η1, .., η7) = (η1, η2, η3; η12, η13, η23; η123).

Estimation of these coefficients from data is
very easy. Estimation errors of the dual co-
ordinates are orthogonal to each other, in
other words, we can estimate any subset of
θ-coordinates independently of the comple-
mentary subset of η-coordinates. Quantifica-
tion of the estimated values can be done via
the Fisher information matrix of the mixed
coordinates. This Fisher information matrix
has a simple structure again due to the dual
orthogonality, resulting in an easy procedure
of quantification (Nakahara and Amari, 2002b).

To use the above properties of the du-
ally orthogonal coordinates, we now intro-
duce the mixed coordinates as follows.

ζk = (ζ1, ..., ζ7) = (η1, ..., ηk−1, θk, ηk+1..., η7)

Each of these mixed coordinates (k = 1, ..., 7)
is useful in singling out different dependency.
Let us now focus on the case of ζ7 ; ζ7 is use-
ful to single out the triplewise dependency
(interaction) i.e., θ7 = θ123, regardless of the
first-order and the second-order modulation
of variables, which are represented by (η1, ...η6).

Let our estimate of expression data ζ̂7 =
(η̂1., , .η̂6, θ̂7) and suppose our null hypothe-
sis, denoted by ζ0

7, is given by ζ0
7 = (η̂1., , .η̂6, θ

0
7),

where θ0
7 = 0. The difference in ζ7, i.e.,

∆ζ7 = θ̂123 − θ0
123 = θ̂7, is not quantified

yet. This is because the metric varies at
each probability distribution p(x; ζ7). We
can, however, quantify the discrepancy be-
tween p(x; ζ0

7) (null hypothesis) and p(x; ζ̂7)
(our estimate) by the KL divergence,

D(ζ0
7; ζ̂7) =

∑

x
p(x; ζ0

7) log
p(x; ζ0

7)

p(x; ζ̂7)
.
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The KL divergence works as a quasi-distance
measure. We have, asymptotically,

2ND(ζ0
7; ζ̂7) ≈ I77(ζ

0
7)(∆ζ7)

2

= I77(ζ
0
7)(θ̂7)

2 ≡ λ7

where N is the number of samples. The right
hand side is a quadratic approximation of the
left hand side. I(ζ0

7) indicates the Fisher
information matrix, with dimension 7 × 7,
of the mixed coordinates at the point ζ0

7 in
the probability space. Generally speaking,
with this quadratic approximation, we need
to use a general Riemannian metric, i.e., of
the form

∑7
i,j=1 Iij(ζ)ζiζj. In our case, how-

ever, because of dual orthogonality, we only
need to use a single component, I77(ζ

0
7) in

I(ζ0
7) = (Iij(ζ

0
7)) (i, j = 1, ..., 7) and further-

more, have a simple formula of I77(ζ
0
7) (Naka-

hara and Amari, 2002b). Hence, we can eas-
ily quantify the estimation of θ123 and then,
following the formulation of the likelihood ra-
tio test, can even get the p-value by λ7 ∼
χ2(1), where χ2(k) denotes χ2 probability dis-
tribution with k degree of freedom.

In a similar manner, we can inspect any
of θk (k = 1, ..., 7) by using ζk. Furthermore,
the similar procedure is available to single
out any subset of θ i.e. more than two θ
components together (Nakahara and Amari,
2002b).

2.5 IPIG; Iterative procedure to

inspect two gene interaction

There are various ways to utilize the informa-
tion geometric measure in microarray data
analysis (Nakahara and Amari, 2002b; Naka-
hara et al., 2002). Here we focus on the
task of investigating an interaction between
two genes of interest and of discovering other
genes that may influence the interaction. A
simple way to do so is to use a full log linear
model having all genes of interest and inspect
the estimated values of the θ-coordinates. How-
ever, it is likely that the number of samples
is limited (Sec 2.2) and also that candidate

genes of interest may not be known (that is,
all genes in the data, ∼ O(104), may be po-
tentially interesting). Therefore, it is rather
impractical to start with the full model.

We hence propose an iterative procedure
using the information geometric measure (called
IPIG). In the IPIG, given two genes of in-
terest, we incrementally add candidate genes
that may regulate its interaction. The IPIG
is in the same spirit as the stepwise procedure
of variable selection in regression (Draper
and Smith, 1998). The selected variables
may not necessarily be the best ones, when
we consider all possible subsets of variables.
Yet the procedure itself is easy to implement
and proceed and may provide reasonably good
subsets, which can be then submitted to fur-
ther biological investigation.

Let us begin by denoting the two genes of
interest by (X1∗, X2∗). The number of the re-
maining genes is n−2 so that they are renum-
bered as X3, ..., Xn by omitting X1∗ and X2∗
from the original set of genes (this renumber-
ing is assumed below in each iteration). In
this remaining set of genes, we seek the third
gene, X3∗, which gives the maximum value
of θ3

12k given X = (X1∗, X2∗, Xk), that is3,

X3∗ = arg max
Xk

θ3
12k (k = 3, 4, .., n).

With the three variable model, this X3∗ gives
the maximal change in the interaction of (X1∗, X2∗)
when we compare the cases of X3∗ = 0 and
= 1 (see Sec 2.3.1).

Next we consider the four variable model,
X = (X1∗, X2∗, X3∗, Xk). Suppose we are
interested in the fourth gene regulation on
(X1∗, X2∗) when X3∗ is expressed (X3∗ = 1).
We then search for

X4∗ = arg max
Xk

θ4
12k + θ4

123k (k = 4, .., n).

3More precisely, we should search for
argmaxXk

λ7 (see Sec 2.4 for this notation).
Here and below, however, for notational simplicity,
we write the equations in terms of the ‘raw’ values
(e.g. θ123), but they should be interpreted as seeking
the variable maximizing the quantified values (e.g.
λ7). In the Results section, we maximized the
quantified values.
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This X4∗ gives the maximal change in the in-
teraction of (X1∗, X2∗) conditional to X3∗ =
1 (see Sec 2.3.2). Similarly, given the five
variable models, when we find

X5∗ = arg max
Xk

θ5
12k + θ5

123k + θ5
124k + θ5

1234k,

where k = 5, .., n, this X5∗ gives the max-
imum change in the interaction conditional
to X3∗ = X4∗ = 1.

General formula of IPIG: We now pro-
vide a general formula of IPIG. Given that m
genes (including X1∗, X2∗) are selected, sup-
pose we want to search for the (m+1)-th gene
that gives maximal change in the interaction
of X1∗ and X2∗ conditional to a specific value
of xm = (x3∗, ..., xm∗), where xi∗ ∈ {0, 1}.

To detect this (m + 1)-th gene (which is
the (m− 1)-th iteration), IPIG is given by

Xm+1∗ = arg max
Xk

∑

θ∈∆m

θ, (k = m+ 1, .., n)

(5)

where we define ∆m by

∆m = Θ({1∗}, {2∗};Cm+
0 )

− Θ({1∗}, {2∗};Cm−
0 ). (6)

Here, Cm+
0 and Cm−

0 denote the set of indices
each of which gives xi = 0 among the indices
in the specific values of xm+ ≡ (xm, xm+1 =
1) and xm− ≡ (xm, xm+1 = 0), respectively
(modified from the notation in Eq 3). As
defined in Eq 4, Θ({1∗}, {2∗};Cm+

0 ) denotes
the subset of components in the θ-coordinates
under the log linear model of m+1 variables,
that is, the set of components whose indices
include 1∗ and 2∗ but do not include any in-
dices belonging to Cm+

0 . Θ({1∗}, {2∗};Cm−
0 )

is defined similarly and ∆m is the set of com-
ponents that is included inΘ({1∗}, {2∗}, Cm+

0 )
but not in Θ({1∗}, {2∗};Cm−

0 ).

Notably, the evaluation of
∑

θ∈∆m
θ amounts

to evaluating the conditional probability of
the three variables (i.e., X1∗, X2∗, Xk), that

is, P (X1∗, X2∗, Xk|xm). In other words, once
we re-parameterize this conditional probabil-
ity by θ′ = (θ′1, .., θ

′
7) = (θ′1, .., θ

′
123), then, we

have θ′7 =
∑

θ∈∆m
θ. Therefore, the quanti-

tive evaluation derived in Sec 2.4 can be eas-
ily done in each iteration. Eq 5 can be also re-
garded as maximizing the difference between
P (X1∗, X2∗|xm+) and P (X1∗, X2∗|xm−). This
property can be used by other exploratory
procedures, one of which is given by (Naka-
hara et al., 2002). Finally, although we pre-
sented IPIG as a ’strictly’ iterative procedure
(i.e. building xm iteratively), Eq 5 can be
performed with any pre-chosen xm. In other
words, if there is any prior knowledge( e.g.
known regulatory interaction), we can take
it into account in choosing xm, which may
be called a modified IPIG.

2.6 Preprocessing

There are two steps in our preprocessing pro-
cedure. The first step is to discard genes with
dubious expression and then normalize the
data. The data treated in the present study
is obtained by Affymetrix microarray. First,
genes with low variance (below 10000) in the
Average Difference (AvgDiff) value were omit-
ted. Then, the AvgDiff values were given by
’Log-intensity = log10( max(10, AvgDiff) )’.
Between-array normalization was performed
so that the mean expression intensities of the
genes for each of the arrays become equal.

The second step is to convert the normal-
ized data into the coordinates of the log lin-
ear model. We consider the gene expression
data, which take real values, as indicating
only the relative degree of expression among
different experimental conditions (e.g. nor-
mal cell/cancer cell). We wish to re-represent
this relative degree as bounded in [0, 1], where
0 and 1 indicate zero and full expression, re-
spectively. Then we represent interaction of
genes ‘through’ a log linear model of a binary
random vector. In other words, we do not re-
gard gene expression by itself as binary. We
only use the log linear model as a means to
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represent interaction of genes as shown be-
low.

How then can we convert a real value
of each gene into a value bounded in [0, 1]
There are several possibilities, and we pro-
vide one approach below. This approach is
applicable to families of linear rank statis-
tics in general (Nakahara et al., 2002) and in
the present study, we adopted a simple one
among them, namely rank order statistics.

We denote the samples for the variable
Xi by XN

i = (xi1, xi2, ., xij , ..xiN), where each
xij has a real value. We denote the rank or-
der of xij by xi(j) and then construct the cor-
responding ZN

i = (zi1, zi2, ., zij, ..ziN ), where
zij = xi(j)/N . Now, each ZN

i expresses the
relative degree of expression, bounded by [0, 1].
Using these ZN

i s, for example, p100 is com-
puted by

p100 =
1

N

N∑

j

z1j(1 − z2j)(1 − z3j).

In a similar manner, all pijk (and any pi1i2...in)
can be computed, so that it is easy to ob-
tain both θ- and η-coordinates after this pre-
processing. Thus, using rank order statis-
tics, we converted real-values of gene expres-
sion to numbers bounded in [0, 1] and fur-
ther mapped the bounded numbers to the θ-
coordinates (and other coordinates).

3 RESULTS

To demonstrate and validate our proposed
method (particularly IPIG), we investigated
an Affymetrix microarray dataset of human
acute lymphoblastic leukemia (ALL) cells (Yeoh
et al., 2002)4, which contains 327 microarray
experiments of 12,558 genes5. ALL is a ma-
lignant disease of the bone marrow in which
lymphoid precursor cells proliferate and re-
place the normal hematopoietic cells of the

4from http://www.stjuderesearch.org/data/ALL1
5After the first step of our preprocessing, the

number of genes became 9,887.

marrow. The malignant lymphoid precursor
cells have malfunctions in the differentiation
process.

In the present study, we chose to investi-
gate the interaction between the genes XBP-
1 and IGHM. XBP-1 (X-box-binding protein-
1) is a gene for CREB-like transcription fac-
tor and is required for plasma cell differen-
tiation (Reimold et al., 2001), while IGHM
(constant region of heavy chain of IgM) is
a subunit of immunoglobulin secreted from
plasma cell. Therefore, the expression of the
two genes can be expected to be somewhat
positively correlated. However, Reimold et
al (2001) reported that direct transcriptional
control of immunoglobulin by XBP-1 was un-
likely. Hence, there is a strong interest in dis-
covering other genes that contribute to the
interaction of the two genes.

(Figure 1 is around here)
In fact, there was no evident correlation

between XBP-1 and IGHM, as shown in Fig 1
A6. IPIG was then employed to discover such
other genes. In the first iteration of IPIG, we
found that the ADPRT gene gives the maxi-
mal change7 in the interaction between XBP-
1 and IGHM. Thus, we set

(X1∗, X2∗;X3∗) = (XBP-1, IGHM; ADPRT).

To visualize the effect of ADPRT on the in-
teraction between XBP-1 and IGHM, the data-
points in Fig 1 A were divided into two groups,
with low (< 0.5) and high (> 0.5) values of
ADPRT, and plotted separately in Fig 1 B
(a) and (b). The sign of θ123 was negative so
that the negative correlation emerged as AD-
PRT was expressed (Fig 1 B b). When AD-
PRT was down-regulated, the positive corre-
lation appeared between XBP-1 and IGHM
(Fig 1 B a).

IPIG next searched for the fourth gene
in two different conditions, namely X3∗ = 0

6In this and following figures, the scale of each
gene is bounded by [0, 1] due to our preprocessing.

7More precisely, ADPRT gene gives the largest
λ7, 4.299, (which yields to p = 0.0382).
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and X3∗ = 18. The fourth genes were found
to be TM4SF2 and ZFP36L1, conditional to
X3∗ = 0 and X3∗ = 1, respectively.

We visualized each gene’s modulation as
follows. The modulation by TM4SF2 was
shown for the data-points with low values
of ADPRT (roughly corresponding to X3∗ =
0)9. In other words, the data-points in Fig 1
B (a) were divided into groups with low and
high values of TM4SF2, and re-plotted in Fig
1 C (a) and (b), respectively. We observe
that the correlation in Fig 1 B (a) is modu-
lated by the expression of TM4SF2 into Fig 1
C (a) and (b). TM4SF2 expression tends to
induce the positive correlation (conditional
to low ADPRT expression).

Similarly, The modulation by ZFP36L1 is
shown in Fig 1 D (a, b) so that data-points in
Fig 1 B (b) were divided into groups with low
and high values of ZFP36L1. ZFP36L1 ex-
pression is facilitatory to ADPRT and acts to
strengthen the negative correlation between
XBP-1 and IGHM (conditional to high AD-
PRT expression).

The fifth gene was then searched by IPIG
in two conditions, namely (X3∗ = 0, X4∗ =
1), whereX4∗ =TM4SF2, and (X3∗ = 1, X4∗ =
1), where X4∗ =ZFP36L1. We then obtained
AF1Q and DFKZp586C1019, respectively; the
corresponding figures are Fig 1 E and F. We
can make observations on the modulation of
each gene, similarly to the above. AF1Q ex-
pression tends to cause a stronger positive
correlation, and DFKZp586C1019 expression
a stronger negative correlation, between XBP-
1 and IGHM (also see below).

(Figure 2 is around here)
Figure 2 summarizes the relation of genes

found by IPIG with respect to their modula-

8We emphasize that the actual calculation to get
the θ-coordinates is done by using the [0, 1]-bounded
values of X3∗, i.e. ADPRT. See Sec 2.6.

9We emphasize that all data-points in Fig 1 A are
used in each iteration of IPIG. The visualization in
Fig 1, showing only subsets of data-points with the
corresponding gene values in each figure, is only for
presentation simplicity. In each figure, the correla-
tion is computed only with the points in the figure.

tion on the interaction between XBP-1 and
IGHM. This diagram should not be taken
rigidly but should be considered as a guide
for further biological examination.

We don’t have a complete biological ex-
planation for the relationship of genes found
by IPIG and the two genes but here describe
several fragmented but relevant pieces of bi-
ological information, referring to some obser-
vations on Fig 1.

First note in Fig 1 B (b) that a cloud
of points in the upper-left corner (i.e. with
low XBP-1 and high IGHM) seems to in-
duce the negative correlation, conditional to
high ADPRT expression. This may suggest
that other pathways may lead to high IGHM
expression independent of XBP-1. Interest-
ingly, these points in the upper-left corner
are mostly preserved when ZFP36L1, which
is identified in the next iteration of IPIG, is
highly expressed (Fig 1 D b). Then, ZFP36L1
may be a candidate gene that regulates IGHM
expression independent of XBP-1. ZFP36L1
is a gene that has zinc finger domain, and its
putative role is a transcription factor regu-
lating the response to growth factors and cy-
tokines. Interactions between ZFP36L1 and
XBP-1 / IGHM / ADPRT is unknown, but
it is reported that this gene plays a role in
B-cell apoptosis and proliferation. Further-
more, the points in the upper-left corner are
again preserved, when the DFKZp586C1019,
identified in the next iteration of IPIG, is
highly expressed (Fig 1 F b). The function
of the DFKZp586C1019 is unknown and the
nucleotide-nucleotide BLAST search gave no
homologue. Yet, DFKZp586C1019 may work
as a positive regulatory factor to the ZFP36L1.

Second, going back to Fig 1 B, we observe
that low ADPRT expression leads to a posi-
tive correlation between XBP-1 and IGHM.
There is no report of ADPRT regulation on
XBP-1 to the authors’ knowledge, but ADPRT-
dependent silencing of transcription factors
including CREB has been reported (Oei et
al., 1998). Since XBP-1 is a CREB-like tran-
scription factor, ADPRT-dependent silenc-
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ing of XBP-1 may occur, i.e. ADPRT expres-
sion may suppress functions of XBP-1. Then
the positive correlation appeared under low
ADPRT expressions (Fig 1 B a), whereas this
suppression is involved in the negative corre-
lation under high ADPRT (Fig 1 B b) given
other pathways discussed above.

TM4SF2 is found to modulate the cor-
relation between XBP-1 and IGHM under
low ADPRT (Fig 1 C). AF1Q is then found
as modulatory, conditional to low ADPRT
and high TM4SF2 (Fig 1 E). Notably, the
two correlations shown in Fig 1 E (a,b) are
smaller than that in Fig 1 C (b). Further-
more the scattered points in Fig 1 C (b) are
somewhat concentrated in the lower-left cor-
ner or in the upper-right corner. These sug-
gest that the correlation in Fig 1 C (b) is pos-
sibly a false one, that is, it emerged simply
due to combining the two set of points in the
two corners. We note that IPIG may success-
fully discover such a false correlation, by in-
specting higher-order interactions. This kind
of observation cannot be made if we inspect
only the pair-wise correlation, as hierarchical
clustering does. TM4SF2 is a gene for trans-
membrane protein, belonging to the Trans-
membrane 4 Superfamily, and associates with
various surface molecules to build a network
of molecular interactions (Hemler, 2001). AF1Q
is also a transmembrane protein. Thus, TM4SF2
and AF1Q may work together but their exact
co-function is unknown.

(Figure 3 is around here)
Remark 1. Gene data sorted by hier-

archical clustering is shown in Fig 3. Genes
found by IPIG are somewhat close to each
other but not next to each other (see figure
legend). Thus, IPIG may provide a valuable
new information, which would not be found
by hierarchical clustering (see Discussion).

Remark 2. One concern in using IPIG is
the stability, that is, a question of how IPIG
behaves if the data is somewhat perturbed.
We show a preliminary result on this issue.
We have examined how IPIG would choose
the third gene, when a number of data points

is removed from the original 327 samples, up
to 5% removal (i.e, the removal of 16 data
points). The result is shown in Fig 4 (see the
legend for the details of this examination).
Only two genes were chosen as the third gene
in all conditions. ADPRT, which is the gene
chosen by IPIG with the full sample, was cho-
sen in almost all conditions. TM4SF2 started
to occupy 3 % around 5 points removal and
became 32.7 % with 16 points removal. No
other genes were chosen in any conditions.
This result indicates that IPIG is to an ex-
tent susceptible to perturbation, which is a
general tendency of any methods that inspect
interaction of random variables. Yet, it also
suggests that IPIG works reasonably with a
small perturbation in that the ADPRT was
dominant and in that only two genes, includ-
ing the ADPRT, were selected. Further dis-
cussion is given in the next section.

4 DISCUSSION

We have shown how the information geomet-
ric measure of a binary random vector can be
applied to analyze gene interaction. We re-
represented gene interaction, where gene ex-
pressions are given by real values, to the in-
formation geometric measure of a binary ran-
dom vector, or the θ-coordinates (and the η-
coordinates). This re-representation is very
simple, one of the strengths of our method.
Using the properties of this dual orthogonal
coordinates under the weak definition of con-
ditional independence, we can investigate the
fine structure of gene interaction. In par-
ticular, we proposed an iterative procedure,
called IPIG, to investigate hidden causes (i.e.
other genes) for the interaction of two genes
of interest. IPIG is useful in discovering a
gene interaction hidden in data and selecting
candidate genes for further biological inves-
tigation. Using dataset of ALL, we demon-
strated the validity of IPIG.

Let us discuss the relation between our
approach and two other related methods, namely
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hierarchical clustering and graphical models
(GMs)10. In general, an approach with the
stronger assumption can treat a larger num-
ber of variables, however, only with the more
lmited probabilistic structure of the variables.
Hierarchical clustering investigates only the
pair-wise interaction, which basically corre-
sponds to assuming the θ-coordinates of third-
order and higher-order interaction as zero in
our approach. It is attractive, with its low
computational load, when a primary inter-
est is to look over the interaction of as many
genes as possible. However, it cannot dis-
cover the fine gene interactions treated by
our approach. Both GMs and our approach
address the high-order interaction with a more
computational load. GMs, however, use a
stronger assumption (i.e. the strong defini-
tion of the conditional independence) than
our approach (the weak definition). The GM
framework is for a more general class of prob-
ability distributions. Our approach focuses
on the probability of a binary random vec-
tor (but see below) and thereby fully utilizes
its properties (e.g. θ-coordinates), so that it
is easy to implement. Also, IPIG systemat-
ically provides a set of candidate genes im-
portant for the fine interaction. Taking these
together, we consider that our approach is
particularly suitable for finding and explor-
ing the fine interaction of a relatively small
set of genes (e.g. pre-screening of a biological
test). Conversely, GMs are particularly suit-
able for making a prediction based on its es-
timate of a relatively large gene network (e.g.
disease diagnosis). Finally, we just mention
that the class of the model trivially becomes
equivalent between GMs and our approach,
if we add to GMs a sufficient number of la-
tent variables, provided GMs treats a binary
random vector.

Let us discuss the limitation of IPIG and
its future extension. First, IPIG investigates
the interaction and rigorously speaking, can-
not distinguish cause and effect. For exam-

10Here, we mostly discuss on GMs with undirected
graphs.

ple, when we say that one gene is ’modula-
tory’ on other two genes (e.g. Results sec-
tion), it should be understood as indicating
not that the gene is causative on the interac-
tion of the other two but that the interaction
is correlated with the degree of expression of
the gene. To address a question of cause and
effect, IPIG should be combined with some
other approaches. Second, we represented
gene interaction through the coordinates of
binary random vector but in principle, this
mapping cannot fully capture the ‘true’ in-
teraction in original data. This is simply
because the probability distribution of real
values may have more dimensions (infinite in
principle) than that of binary random vec-
tors. It is possible to extend our method
from the binary to k-discrete random vari-
able case. The current binary model, how-
ever, may be sufficient for selecting genes of
interest as pre-screening of biological test.
Examination on this issue is needed. Third,
IPIG is found to be to an extent suscepti-
ble to statistical fluctuation of data (see Re-
mark 2 in Results). From a theoretical view-
point, this fact motivates an exploration of
robust statistical techniques in IPIG. From a
practical viewpoint, the result in Fig 4 sug-
gests that a modified IPIG (see the end of
Sec 2.5) may be useful in practice, combined
with a perturabation test. In Fig 4, we found
that the TM4SF2 is another potential can-
didate for the third gene in addition to the
ADPRT. On the other hand, with the full
sample, after choosing ADPRT in the first
iteration, the IPIG chose the TM4SF2 in the
next iteration, as the forth gene conditional
to low ADPRT. These two facts together sug-
gest that it may be worth to also examine
the TM4SF2 in the case of high ADPRT.
In other words, this suggest using a modi-
fied IPIG, which means considering both two
genes modulatory before proceeding to the
next iteration and which departs from the
original IPIG that is strictly iterative. Fi-
nally, IPIG is only one instantiation of using
the information geometric measure for DNA
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microarray data analysis. We must further
explore its possibilities.
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Figure legends

Figure 1: IPIG gives decomposition of the interaction between two genes, XBP-1 and IGHM.

Figure 2: Scheme drawn from the results in Fig 1. The arrow and flat heads indicate the
positive and negative influence onto the gene (and/or the gene interaction), respectively.

Figure 3: Genes are sorted by hierarchical clustering. The positions of genes found by IPIG are
also indicated. The gene numbers (counting from the top among 9887) are as follows: AF1Q
(5332), DKFZp586C1019 (6037), IGHM (9010), XBP-1 (9070), TM4SF2 (5332), ADPRT
(9378), and ZFP36L1 (9384).

Figure 4: Perturbation test. From the original 327 samples, a number of data points is
randomly removed and IPIG is used to identify the third gene (i.e the first iteration of IPIG).
This process is repeated a thousand times and we then identified the percentage of the identities
of the chosen third gene in the thousand trials (ordinate). The number of data points removed
ranges from 1 to 16 (abscissa), where 16 corresponds to 5 % of the sample size.
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Figure 2
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Figure 3
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Figure 4
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