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Abstract

In examining spike trains, different groups propose different models

for describing the structure of these trains. The different models often

seem quite similar, but because their formalism is different it is often

not obvious how predictions made would differ. We use the information

geometric measure, an orthogonal coordinate representation of point

processes, to express different models of stochastic point processes in

∗This technical report is an extended version of a journal paper, ”A comparison of

descriptive models of a single spike train by information geometric measure”, including

some examples and figures.
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a common coordinate system. Within such a framework, it becomes

straightforward to visualize the higher order correlations of different

models and thereby assess the differences between models. Here we

apply the information geometric measure to compare two similar, but

not identical, models of neuronal spike trains, namely the inhomoge-

neous Markov and the mixture of Poisson models. It shows that they

differ in the second and higher order interaction terms. For the mix-

ture of Poisson model the higher order interactions (2nd and higher)

are of comparable magnitude within each order, whereas for the inho-

mogeneous Markov model the 2nd and higher-order interactions have

a structure of alternating signs over different orders. This provides

guidance about what measurements of data that would separate the

efficacy of the two models. As newer models are proposed they also

can be compared to these models using information geometry.

1 Introduction

Over the past two decades studies of the information carrying properties of

neuronal spike trains have become more intense and sophisticated. Many

early studies of neuronal spike trains concentrated mainly on using general

methods to reduce the dimensionality of the description. Recently, however,

specific models have been developed to take into account findings from both

experimental and theoretical biophysical data, (Dean, 1981; Richmond and

Optican, 1987; Abeles, 1991; Bialek et al., 1991; Reid et al., 1992; Softky

and Koch, 1993; Shadlen and Newsome, 1994; Victor and Purpura, 1997;

Stevens and Zador, 1998; Oram et al., 1999; Shinomoto et al., 1999; Meister
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and Berry, 1999; Baker and Lemon, 2000; Kass and Ventura, 2001; Reich et

al., 2001; Brown et al., 2002; Wiener and Richmond, 2003; Beggs and Plenz,

2003; Fellous et al., 2004) (references therein). These newer approaches

guess at specific structures that give rise to the spike trains in experimental

data. Because these models have specific structures, fitting these models is

translated into estimating the parameters of the model, rather than using

general approaches to dimensionality reduction. There are several benefits

of having these more descriptive models. First, all of the approaches de-

scribe data in a succinct manner. Second, the more principled models make

their assumptions explicit, i.e., they declare which properties in data are

considered important. Third, parametric models have ‘practical’ value for

data analysis because the parameter values of a model can often be reason-

ably well estimated even with the limited number of samples that can be

obtained in experiments.

When considering different models it is natural to ask which model is

really good, or perhaps, more properly, what do we learn about the sys-

tem from the different models, and in what ways are the models equivalent,

or different? If the differences can be seen explicitly, experiments can be

designed to evaluate features that distinguish the models. A powerful ap-

proach for distinguishing them is to project them into a single coordinate

frame, especially an orthogonal coordinate one. Information geometric mea-

sure (IG) (Amari, 2001; Nakahara and Amari, 2002b) provides a orthogonal

coordinate system to make such projections for models of point processes.

Using the IG measure, we consider a probability space, where each ’point’
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in the space corresponds to a probability distribution. Estimating the prob-

ability distribution of the spike train from experimental data corresponds to

identifying the location and spread of a point in this space. In this context,

different assumptions underlying the different models of the spike train cor-

respond to different constraints of the search (Fig 1). Once different models

are re-represented by the common coordinate system, it is possible to com-

pare the nature of different models. Thus, we can compare the regions of

the geometric expression that can be reached by the different models, and

the regions that overlap and the regions that are unique can be identified.

Here we use the IG measure to compare two different stochastic models

of spike trains, the inhomogeneous Markov (IM) (Kass and Ventura, 2001)

and the mixture of Poisson (MP) models (Wiener and Richmond, 2003).

Experimentally recorded spike trains generally depart from Poisson statistics

(see Section 2.) The variance-to-mean relation is seldom one, the interval

distribution is often not truly exponential, and distributions of counts from

a counting interval are not Poisson. Recently, both IM and MP models have

been proposed to deal with these deviations. Both treat the spike trains as

point processes, but each emphasizes different properties. The intersection

of the two models is an inhomogeneous Poisson process, which is a special

and perhaps uninteresting case. The IM model model emphasizes the non-

Poisson nature of interval distributions, whereas the MP model emphasizes

the non-Poisson nature of the spike count distribution (Fig 2; Section 3). To

compare the two models, we re-represent the two models by the IG measure

as a common coordinate system (Section 4). It shows their predictions about
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second and higher-order statistics (Section 5). The ’first-cut’ coordinates of

the IG representation shows how to use higher order interactions among

spikes to distinguish between these models.

2 Preliminaries

Consider an inhomogeneous Poisson process. For a spike train of a single

neuron, consider a time period of N bins, where each bin is so short that it

can have at most a single spike. Each neuronal spike train is then represented

by a binary random vector variable. Let XN = (X1, · · · ,XN ) be N binary

random variables and let p(xN ) = P
[
XN = xN

]
,xN = (x1, · · · , xn) , xi =

0, 1, be its probability, where p(xN ) > 0 is assumed for all x. Each Xi

indicates a spike in the i-th bin, by Xi = 1, or no spike, by Xi = 0. With

this notation, the inhomogeneous Poisson process is given by

p(xN ) =
N∏
i

ηxi
i (1 − ηi)

1−xi

where ηi = E [xi]. The probability of a spike occurrence in a bin is indepen-

dent from those of the other bins, i.e.

p(xN ) =
N∏
i

p(xi), where p(xi) = ηxi
i (1 − ηi)

1−xi .

Then, (η1, · · · , ηN ), or the PSTH (peri-stimulus histogram), obtained from

experimental data is sufficient to estimate parameter values of this model.

In this condition experimental data analysis is simple, and spike generation

from this model easy. This independence property leads to well known facts:

the count statistics obey the Poisson distribution and the interval statistics
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obey the exponential distribution. The simplicity makes the Poisson model

popular as a choice for the descriptive model. Experimental findings often

suggest that the empirical probability distributions of spike counts and in-

tervals are close to the Poisson distribution and the exponential distribution,

respectively, but, so frequently, they depart from these as well (Dean, 1981;

Tolhurst et al., 1983; Gawne and Richmond, 1993; Gershon et al., 1998; Lee

et al., 1998; Stevens and Zador, 1998; Maynard et al., 1999; Oram et al.,

1999). These findings provoked studies considering a larger class of models,

including the IM and MP models (see Section 3.)

The Poisson process occupies only a small subspace compared with a full

space, or the original class of probability distributions p(xN ). The number

of all possible spike pattern is 2N , since XN ∈ {0, 1}N . Therefore, each

p(xN ) is given by 2n probabilities

pi1···iN = Prob {X1 = i1, · · · ,XN = iN} , ik = 0, 1, subject to
∑

i1,···,iN
pi1···iN = 1.

The set of all the possible probability distributions {p(x)} forms a
(
2N − 1

)
-

dimensional manifold SN . To represent a ‘point’ in SN , i.e. a probability

distribution p(xN ), one simple coordinate system, called the P -coordinate

system is given by {pi1···iN } above, where {pi1···iN } corresponds to 2N prob-

abilities. Every set of values has 2N probabilities, with each corresponding

to a specific probability distribution, p(xN ). Since {pi1···iN } sums to one,

the effective coordinate dimension is 2N − 1 (instead of 2N ).

For the information geometric measure (IG) we use two other coordinate

systems. The first is the θ-coordinate system that is explained in Section 4,
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and the second coordinate system is the η-coordinate systems, given by the

expectation parameters,

ηi = E [xi] = Prob {xi = 1} , i = 1, · · · , n

ηij = E [xixj ] = Prob {xi = xj = 1} , i < j

ηi1i2···il = E [xi1 · · · xil ] = Prob {xi1 = xi2 = · · · = xil = 1} i1 < i2 < ... < il.

All ηijk, etc., together have 2N − 1 components, that is,

η = (η1,η2, · · · ,ηN ) = (ηi, ηij , ηijk, · · · , η12...N )

has 2N − 1 components, where we write η1 = (ηi), η2 = (ηij) and so on,

forming the η-coordinate system in SN .

Any probability distribution of XN can be completely represented by P -

coordinates or η-coordinates, if and only if all of the coordinates are used. If

any model of the probability distribution of XN has fewer parameters than

2N − 1 (this is usually the case), the probability space in which the model

lies is restricted. Since the Poisson process uses η1 as its coordinates, it lies

in a much smaller subspace than the full space SN .

The components of the η-coordinates, η1 = (ηi) = (η1, η2, ..., ηN ), (i =

1, ...,N) are familiar, since they would correspond to the PSTH in experi-

mental data analysis. It is taken to represent the expectation of the time

course of the neural firing, expressed as the probability of a spike at each

time or as the firing frequency. Below we freely exchange the PSTH and η1

for simplicity. To be careful, however, we mention the difference between

η1 and the probability density of firing, since the PSTH is often regarded
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as the latter as well. The probability density will be re-calculated if the bin

size changes so that it is invariant under the change of the bin size and has

the unit as the number of firings per unit (infinitesimal) time. The firing

frequency would become the probability density as the time resolution ap-

proaches zero. In data analysis, the firing frequency is then taken to be the

empirically measured density. In contrast, each of η1, i.e. ηi, is a probability

of a bin, P [Xi = 1], not a probability density. For ηi, it is assumed that each

bin can contain at most only one spike. In practical data analysis, it thus

can be regarded as the density, as long as the bin size is small enough. In

general, though, we must be aware of this difference and be careful in trans-

lating between them. How large to make the bins is an important question

but beyond the scope of the present study. Some may concern what if an

event is found not to occurr in data, i.e. if zero probability must be assigned

to the event. In such a case, we can, in principle, re-construct a probability

model from which the events of zero probabilities are omitted, or impose

some assumptions on those zero probabilities, which seems more useful in

practice (see (Nakahara and Amari, 2002b).)

For presentation simplicity, we sometimes write Xi = 0 and Xi = 1 as

x0
i and x1

i , respectively, e.g., xN = (X1 = 0,X2 = 0,X3 = 1 · · ·XN = 1) =

(x0
1, x

0
2, x

1
3v, · · ·x1

N ). The notation of p(ijk) etc is used to define

p(i1i2...ik) = P
[
x0

1, · · · , x1
i1 , · · · x1

i2 , · · · x1
ik
· · · x0

N

]
.

We also use p(0) = P
[
x0

1, · · · · · · x0
N

]
. The cardinality of a spike train, i.e.
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the number of spikes or the spike count, is

Y ≡
∣∣∣XN

∣∣∣ = # {Xi = 1} .

Given a specific spike train xN , n is reserved to indicate n =
∣∣∣xN

∣∣∣ and

s(1), s(2), · · ·, s(n)

are used to denote specific timings of spikes that are the set of indices having

xi = 1. For example, with this notation, we write

xN = (x0
1, ···x0

s(1)−1, x
1
s(1), x

0
s(1)+1···x1

s(2), ···x1
s(3), x

0
s(3)+1, ···x1

s(n), x
0
s(n)+1, ....x

0
N ).

3 Two Parametric Models for Single Spike Train

Here we present the original formulations of the inhomogeneous Markov (IM)

(Kass and Ventura, 2001) and the mixture of Poisson (MP) models (Wiener

and Richmond, 2003) .

3.1 Inhomogeneous Markov model

The IM model was developed as a tractable class of spike interval probability

distributions to account for the observation that the spike firing over bins

is not completely independent and thus departs from the Poisson process

(Kass and Ventura, 2001; Ventura et al., 2002).

The inhomogeneous Markov assumption is the key of the IM model,

assuming the following equality: for any spike event, x1
s(l) (l ≤ n),

P
[
x1

s(l)

∣∣∣x1, · · ·xs(l)−1

]
= P

[
x1

s(l)

∣∣∣x1
s(l−1), x

0
s(l−1)+1, · · ·x0

s(l)−1

]
.
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The probability of firing at a time given its past, which is the left side of

the equation, depends only on the time of the last spike, and the time since

it occurred. Denote the right hand side by K̃s(l−1),s(l), as

K̃s(l−1),s(l) = P
[
x1

s(l)

∣∣∣x1
s(l−1), x

0
s(l−1)+1, · · ·x0

s(l)−1

]
,

where l = 2, ..., n (potentially n is up to N).

If K̃s(l−1),s(l) = ηs(l) = P
[
x1

s(l)

]
, this is an inhomogeneous Poisson pro-

cess. By explicitly including the parameter, {K̃s(l−1),s(l)}, the IM model

enlarges the class of probabilities beyond the Poisson process, while reduc-

ing the space in which it lies to be smaller than a “full” probability space,

SN . The original parameters of the IM model are given by {ηi, K̃i,j} (i, j =

1, , , ,N, i < j). Once we define another quantity, Ks(l−1),s(l), such that

K̃s(l−1),s(l) = ηs(l)Ks(l−1),s(l)

(provided ηi > 0), they are given by

{ηi,Ki,j} (i, j = 1, , , ,N, i < j).

After some calculations, we obtain the following:

Proposition 1

Given the original parameters {ηi, K̃i,j} (i, j = 1, , , ,N, i < j), proba-

bility of any spike train under the IM model is given by

PIM (xN )

=

{
s(1)−1

Π
l=1

(1 − ηl)

}
ηs(1)

{
n
Π
l=2

K̃s(l−1),s(l))
}

n
Π
l=1

s(l+1)−s(l)−1

Π
k1

(1 − K̃s(l),s(l)+k),

(1)
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where and hereafter PIM is used to denote a probability distribution of the

IM model and the convention s(n + 1) = N + 1 is introduced without loss

of generality. (See Appendix A for the proof.)

Equation (1) indicates that the probability of any spike train p(xN )

depends only on ηi and K̃i,j together under the IM model. Thus, {ηi, K̃i,j}
(i, j = 1, , , ,N, i < j) is one coordinate system for the IM model and

{ηi,Ki,j} is another. The number of parameters, or the dimensionality of

the IM model, is N + N(N−1)
2 .

A subclass of IM model, called multiplicative inhomogeneous Markov

(MIM) model, was also proposed (Kass and Ventura, 2001). In addition to

the IM assumption, they assumed another constraint on Ki,j , given by

aj−i ≡ Ki,j . (2)

This assumption is not equivalent to assuming K̃i,jK̃i′,j′, where j−i = j′−i′.
The assumption further constrains the probability space to search (Fig 2.)

The dimensionality of the MIM model is 2N − 1. The MIM model is easily

expressed by substituting K̃i,j = ηjaj−i in Eq 1.

3.2 Mixture of Poisson model

The MP model is primarily motivated by the desire to make the model more

account for the spike count statistics over the interval of interest(Wiener and

Richmond, 2003). In many neurophysiological recordings of single neurons,

the spike count data, or the probability distribution of spike counts, is easy

to obtain, and arguably the most robust measure to estimate. It is also of
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interest for biophysical reasons. The MP model does not refer to a mixture

of Poisson distribution but refers to a specific spike descriptive model, as

shown below.

The MP model begins by fitting the spike count distribution using one

or more Poisson distributions, i.e., a mixture of Poisson distributions. The

mixture of Poisson distribution is a larger model of the spike count distri-

bution than the Poisson distribution, as desired. The mixture of Poisson

distribution itself cannot determine a spike train generation without further

assumptions. In the original work (Wiener and Richmond, 2003) each trial

was drawn from one of the Poisson distributions; each k-th component of

the Poisson process is chosen with a probability πk in each trial of experi-

ment, generating a spike train of the trial. Thus the MP model enjoys the

simplicity of the Poisson process for generating spike trains in each trial.

Let us write each k-th (inhomogeneous) Poisson process, Pk,

Pk

[
XN = xN

]
=

N∏
i

ηxi
i,k (1 − ηi,k)

1−xi

where we define ηi,k = Ek [xi], and Ek denotes the expectation with respect

to the probability Pk. The trial-by-trial mixture of the Poisson processes is

given by

P
[
XN = xN

]
=

K∑
k

πkPk

[
XN = xN

]
,

where {πk} are mixing probabilities with
K∑

k=1
πk = 1. The corresponding

spike count distribution is the mixture of Poisson distribution, given by

P [Y = y] =
K∑
k
πkPk [Y = y]. Here the Poisson distribution of each k-th
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component is given by

Pk [Y = y] =
yλk

y!
e−λk , where we have λk =

N∑
i

ηi,k.

An important issue is how we estimate a spike generation of each k-th com-

ponent, i.e. {ηi,k} (i = 1, ...,N). Consider first a single Poisson process, for

which we pretend to have only a single component in the above formulation.

Can we recover {ηi,1} from λ1? We can get η = λ1/N , if the process is

homogeneous. If inhomogeneous, the solution is not unique: various sets

of {ηi,1} may match a value of λ1. In practice we get {ηi,1} by looking

at the PSTH from the same experimental data. If there is more than one

component, the PSTH tells us only the left hand side of the equation below

ηi = E [Xi] =
K∑
k

πkηi,k (i = 1, ...N).

In this general case, to obtain {ηi,k} of each k-th component, the approach

taken by the MP model is to assume that the overall shape of PSTH is the

same among all components (Wiener and Richmond, 2003). This assump-

tion implies that there exists, for each k, a constant αk such that ηi,k = αkηi

for any i = 1, · · · , N . By taking the sum with respect to i, the value of αk

is given by

αk =
λk

c1
, where we defined c1 ≡

N∑
i

ηi.

The MP model, as a generative model of spike trains, is the trial-by-trial

mixture of Poisson process with this assumption. We summarize as follows.

Proposition 2
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Given the original parameters {πk, λk, ηi} (k = 1, ...,K; i = 1, ...,N),

the probability distribution of any spike pattern of the MP model is given

by

PMP (xN ) =
K∑
k

πkPk(xN ) (3)

where and hereafter PMP denotes the probability distribution of the MP

model and Pk denotes the probability distribution of the k-th component,

Pk(xN ) =
N∏
i

ηxi
i,k (1 − ηi,k)1−xi , (4)

where ηi,k is defined by

ηi,k =
λk

c1
ηi (i = 1, · · · , N) . (5)

Here, c1 is a constraint of the model parameters, given by

c1 =
N∑
i

ηi =
N∑
i

K∑
k

πkηi,k =
K∑
k

πkλk. (6)

Another constraint of the model parameter is
∑K

k πk = 1.

Thus, the dimensionality of the MP model is 2K +N − 2. There is one

issue worth mentioning on the constraint on c1 (Eq 6). c1 is intrinsic, or a

part of, the MP model. It is then natural to estimate all of the parameters

together {πk, λk, ηi}, for example, using a maximum likelihood estimation

on both empirical distributions (the PSTH and spike counts) together with

the two constraints above. Or, if the estimation with each distribution is

done separately first, we then need to project this estimated ’point’ onto the

space restricted by Eq 6, i.e. further re-estimate the parameter values with
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this constraint. The procedure in the original work (Wiener and Richmond,

2003), where the estimation is done separately, seems sufficient in practice

but a mathematical rigorous examination remains for future work. At least,

examination of the constraint on c1 would work as a sanity check.

4 Representation of Two Models by Information

Geometric Measure

4.1 Information Geometric Measure

Having established the two models, we re-write them in information geo-

metric (IG) measure (Amari, 2001; Nakahara and Amari, 2002b). Here we

first give a brief description of the IG measure. The usefulness of IG mea-

sure was studied earlier for spike data analysis (Nakahara and Amari, 2002a;

Nakahara et al., 2002; Nakahara and Amari, 2002b; Amari et al., 2003) and

for DNA microarray data (Nakahara et al., 2003). Although these stud-

ies emphasized neural population firing and interactions among neurons (or

gene expressions), almost all the earlier results can be directly applied in

analyzing single neuron spike trains because the mathematical formulation

is general in the sense that it can be applied to any binary random vector.

We mention that the IG measure has some broad roots for data analysis in

a log-linear model (Bishop et al., 1975; Whittaker, 1990).

Let us first introduce the θ-coordinate system, defined by,

logP
[
XN = xN

]
=
∑

θixi+
∑
i<j

θijxixj+
∑

i<j<k

θijkxixjxk · · ·+θ1···Nx1 · · · xN−ψ,
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where the indices of θijk, etc., satisfy i < j < k and ψ is a normalization

term, corresponding to − log p(x1 = x2 = ... = xN = 0). This log expansion

is not an approximation, but is exact. All θijk, etc., together have 2N − 1

components, that is,

θ = (θ1,θ2, · · · ,θN ) = (θi, θij, θijk, · · · , θ12...N ),

and forms the θ-coordinate system in SN , also called θ-coordinates. This θ-

coordinates can represent any probability distribution in SN . It is straight-

forward to write down any components of the θ-coordinates in relation to

the P -coordinate system. Here, we list a few first terms,

ψ = − log p(0), θi = log
p(i)

p(0)
, θij = log

p(ij)p(0)

p(i)p(j)
, θijk = log

p(ijk)p(i)p(j)p(k)

p(0)p(ij)p(jk)p(ik)
.

For the later use, let us explicitly write the components of both η- and

θ-coordinates with respect to P -coordinates.

Theorem 3

θi1i2...il =
l∑

m=0

∑
A∈Ωm(Xl∗)

log p(−1)l−m

(A) (7)

ηi1i2...il =
N−l∑
m=0

∑
A∈Ωm(X̄l∗)

p({i1,i2,...il}∪A), (8)

where some conventional notation is introduced; X l∗ indicates the specific

l-tuple among XN , namely {Xi1 ,Xi2 , ...Xil}. Ωm(X l∗) indicates the set of

all possible m-tuple of X l∗. In the first equation, given A ∈ Ωm(X l∗), A

indicates each element of Ωm(X l∗) and the summation is taken over all the

elements of Ωm(X l∗). The same convention applies to the second equation

except that the summation is taken over Ωm(X̄ l∗) and X̄ l∗ is defined such
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that XN = X l∗ ∪ X̄ l∗ and X l∗ ∩ X̄ l∗ = φ. Given A{j1, ..., jm}, p(A) is used

as the same notation as p(j1...jm) in the first equation and p({i1,i2,...il}∪A) as

p(i1i2...ilj1...jm) in the second equation.

The proof can be easily derived by using Rota’s method, i.e. the principle

of inclusion-exclusion, and is omitted. As shown previously (Amari, 2001;

Nakahara and Amari, 2002b), the IG measure, the η- and θ-coordinates

together, effectively uses the dually flat structure of the η-coordinates and

θ-coordinates in SN , which is the property of being e-flat and m-flat in a

more general term (Amari and Nagaoka, 2000). The notion of e-flat and

m-flat is proved to underlie various useful properties of probability distri-

butions, especially the exponential family of probability distribution. The

IG coordinates allow examination of the different order interactions of neu-

ral spike firing and then allows calculation the information conveyed by

these different orders (Nakahara and Amari, 2002b). In particular, the

mixed coordinates of different orders, constructed from η-coordinates and

θ-coordinates, is useful for examining different order interactions (Amari,

2001; Nakahara and Amari, 2002b). This occurs because under the mixed

coordinates, the components of η-coordinates (or θ-ones) can be treated in-

dependently from those of the other, i.e. θ-coordinates (or η-ones), due to

the dual orthogonality of η- and θ-coordinates. This makes comparison of

each order interaction between any probability distributions transparent.

Among the coordinates, the 1st order (or 1st-cut) mixed coordinate

(η1,θ2, · · · ,θN ) is useful for dissociating the mean firing rate η1 from all the
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second and higher-order interactions under null hypothesis of any correlated

firing because all the components of θ2, · · · ,θN can be treated independently

from η1. This 1st-cut mixed coordinates is most suitable for comparing the

IM and MP models. The original parameters of the IM model are
{
ηi, K̃i,j

}
and those of the MP model are {πk, λk, ηi}. These parameters are regarded

as observable and thereby used in fitting data (Fig 2). Since both models

share the parameters η1, the difference between them lies with other com-

ponents in the full probability space. Then, the 1-cut mixed coordinates

can characterize the difference, discussing the interaction terms θ2, · · · ,θN ,

separately from η1.

We now make two remarks useful in the following sections. First concerns

the notion of restricted probability space. Recall that the Poisson process

is the intersection of the IM and MP models, which is given by p(xN ) =
N∏

i=1
ηxi

i (1 − ηi)
1−xi . This model corresponds to

log p(xN ) =
∑

i

θixi − ψ, (9)

where θi = log ηi
1−ηi

. Therefore, we have (θi) ⇔ (ηi). In other words,

the Poisson process lies in a restricted subspace smaller than the full space,

characterized by setting (θ2, ...θN ) = (0, ..., 0). Under the maximum entropy

principle, the Poisson process is the distribution that can be determined

completely by the first-order statistics η1. The IM and MP models expand

this restricted space differently. Consider the following,

log p
(
xN
)

=
∑

θixi +
∑

θijx(ij) − ψ,

where θi = log p(i)

p(0)
and θij = log p(ij)p(0)

p(i)p(j)
. Now, (θ1,θ2) becomes the coor-
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dinate system and (η1,η2) is another coordinate system, i.e. η-coordinates.

The number of parameters is N + N(N−1)
2 . This model has been extensively

studied in various fields, e.g. the spin glasses and/or Boltzmann machine.

This model is characterized by setting (θ3, ...,θN ) = (0, ..., 0) and thus,

the model that can be determined completely by the first and second-order

statistics (η1,η2) under the maximum entropy principle. We call this model

the 2nd-order IG model.

Second concerns the different representations of the η- and θ-coordinates.

Their dual orthogonality is broader than the specific representations of the

two coordinates described above. Specifically, there can be different repre-

sentations of the two coordinates, due to the degrees of freedom in affine

coordinate system. This notion will be easily understood in the following

example. Hereafter, when the distinction is needed, we refer to the origi-

nal dual coordinates, θ = (θ1,θ2, · · · ,θN ) and η = (η1,η2, · · · ,ηN ) as the

’standard’ IG, or θ- and η-, coordinates.

Example: Consider a simple example, X2 = (X1,X2). We have

log p(x2) = θ1x1 + θ2x2 + θ12x(12) − ψ.

The standard θ- and η-coordinates are given by θ1 = log p(1)

p(0)
, θ2 = log p(2)

p(0)

and θ12 = log p(12)p(0)

p(1)p(2)
and by η1 = E [X1] , η2 = E [X2], and η12 = E [X1X2],

respectively. Now, for example, consider:

log p(x2) = θ′1x1 + θ′2x2 + θ′12 (1 − x1) x2 − ψ′.

Here (θ′1, θ′2, θ′12) is a new θ-coordinates of X2. The new η-coordinates is

given by η′1 = E [X1] = η1, η′2 = E [X2] = η2, and η′12 = E [(1−X1) (X2)] =
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η2−η12. Each of the two new coordinates is linearly related to each standard

coordinates and thus, the new coordinates systems are dually orthogonal to

each other, forming a new set of η- and θ-coordinates.

4.2 IM model

We aim to represent the IM model by standard θ-coordinates. We intro-

duce another representation of θ- and η-coordinates for convenience. Let us

define, for i < j,

X̃i,j ≡ XiXj

j−1∏
l=i+1

(1 −Xl). (10)

X̃i,j becomes 1 only when there are spikes at the i-th and j-th bins and no

spikes between them. This is a natural quantity to be dealt with the IM

model. We have

η̃i,j ≡ E
[
X̃i,j

]
= ηiK̃i,j

j−i−1∏
l=i

(
1 − K̃i,i+l

)
. (11)

Since
{
ηi, K̃i,j

}
is a coordinate system of the IM model, Eq 11 implies that

{ηi, η̃i,j} is also another coordinate system, which is another representation

(but not the standard one) of η-coordinates of the IM model. In correspon-

dence to {η̃i,j}, we introduce {θ̃i,j} by

logPIM (xN ) ≡
∑

θiXi +
∑
i<j

θ̃i,jX̃i,j − ψ. (12)

We see that {θi, θ̃i,j} is another representation of θ-coordinates of the IM

model, corresponding to the η-coordinates, {ηi, η̃i,j}. We have

θi = log
p(i)

p(0)
, θ̃i,j = log

p(ij)p(0)

p(i)p(j)
. (13)
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The dimensionality of the coordinates is N + N(N−1)
2 and is equal to that of

the 2nd-order model of the standard coordinates. However, the restricted

probability spaces of IM and 2nd-order models are different.

To see how the IM model is embedded in the full space, let us write

the IM model in the standard θ-coordinates. By expanding Eq 12 with the

definition of X̃i,j , we get θij = θ̃i,j , θijk = −θ̃i,k, θijkl = θ̃i,l, or in general,

θi1i2···ik = ( −1)k θ̃i1,ik (k ≥ 2). (14)

This equation indicates that the restricted probability space of the IM model

imposes a specific alternating structure in the higher-order interaction term.

It also indicates that the IM model is not distinguishable from the 2nd-order

model of the standard θ-coordinates in terms of the second-order interaction,

since we have θij = θ̃i,j . The relation of {θi, θ̃i,j} with the original parameters

{ηi,Ki,j} is given as follows.

Theorem 4

The IM model is represented by the standard θ-coordinates in relation

to its original parameters {ηi,Ki,j} (i < j, ; i, j = 1, ...,N) as

θi = log
ηi

1 − ηi
+

N∑
l=i+1

log
(

1 + ηl
1 −Ki,l

1 − ηl

)
(15)

θi1i2···ik = ( −1)k θ̃i1,ik (k ≥ 2) (16)

θ̃i,j = logKi,j −
N∑

l=j

log
(

1 + ηl
1 −Ki,l

1 − ηl

)
. (17)

See Appendix B. First, note that the 1st-order component θi deviates

from that of the Poisson process (which would have the form of log ηi
1−ηi

in
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the right hand side). Second, θ̃i,j becomes zero if any Ki,j is equal to one,

which corresponds to the case that the IM model reduces to the Poisson

process. Thus, in the above of θ̃i,j , the discrepancy of the IM model from

the Poisson process is indicated by the first term logKi,j (in reference to

log 10) and also 1 −Ki,l (l = j, ...,N) in the second term. We see that θ̃i,j

depends not only on Ki,j and ηj but also on Ki,l and ηl for l = j + 1, ...,N .

We now approximate θ̃i,j to grasp its nature. First, ηi � 1 holds in most

data. Second, the original work (Kass and Ventura, 2001) suggests that

Ki,j is roughly within a range of [0.4,1.6], implying that the probability of a

spike occurring is not strongly dependent on the time of the previous spike

(refer to their paper for a question of relation to the refractory period). In

any case, since this estimation is done only with one type of data, further

examination is required to take it as a general phenomenon. Yet, it seems

unlikely that Ki,j takes a different order of magnitude. Then, let us assume

ηl
1 −Ki,l

1 − ηl
� 1, (18)

and also notice that in many situations, we have ηl � Ki,j . In such a case,

we approximately have

θ̃i,j 	 logKi,j −
N∑

l=j

ηl
1 −Ki,l

1 − ηl
. (19)

We observe that Ki,j is the dominant term in θ̃i,j and that at the same time,

the terms (1 − Ki,l) (l = j + 1, ...N) also contribute to θ̃i,j . As far as the

order of ηl does not differ between each other, for further simplification, let
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us put η̄j = 1
N−j+1

∑N
l=j ηl, and then we have

θ̃i,j 	 logKi,j − η̄j

1 − η̄j

N∑
l=j

(1 −Ki,l). (20)

For the multiplicative IM (MIM) model, we can replace Ki,j by aj−i in

Theorem 4 to obtain the exact expression. In case of using the above ap-

proximation, we get

θ̃i,j 	 log aj−i − η̄j

1 − η̄j

N∑
l=j

(1 − al−i). (21)

Note that even with the MIM model, θ̃i,j cannot be represented by the terms

that only use aj−i. In other words, even for a fixed k = j − i, θ̃i,j takes

different values and the range of its values is determined by the summation

in the second term (see Example below). The summation goes from aj−i to

aN−i. Thus, N , the number of bins, affects the value of θ̃i,j . This is because

θ̃i,j is defined with respect to a given period, whereas ak is not. In this sense,

the second term reflects a boundary effect.

Example In Fig 3 (A-C), we show an example of MIM model and manip-

ulated only {ηi} among the original parameters from A to C. The overall

shape of θ̃i,j follows the shape of aj−i (= Ki,j), while θ̃i,j varies even with

a fixed k. The range obtained by the above approximation is indicated

by thick lines. We note that in this example of aj−i (which very roughly

imitates the curve estimated in the original work), the minimum is almost

always equal to set i = 1 for each k = j − i. Thus, the lower thick line is

almost equal to log ak.
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4.3 MP model

Let us first write the MP model in terms of the log expansion, based on its

original definition (Proposition 2) as

logPMP (xN ) = log
K∑
k

πkPk(xN ). (22)

To represent the MP model in the standard θ-coordinates using relation to

the original parameters, i.e. {πk, λk, ηi} (k = 1, · · · ,K , i = 1, · · · , N), note

that the probabilities of the MP model, denoted by pMP , are represented

by the original parameters (Proposition 2),

pMP
(i1···il) =

K∑
k

πkp
k
(i1···il), (23)

where pk, for each k-th component inhomogeneous Poisson process, is given

by

pk
(0) =

N∏
j=1

(1 − ηj,k), pk
(i) = pk

(0)

ηi,k

1 − ηi,k
, · · · , pk

(i1···il) = pk
(0)

l∏
j=1

ηij ,k

1 − ηij ,k
.

Also recall that we have ηi,k = λk
c1
ηi where c1 =

N∑
i
ηi. Then we have

Theorem 5

The probabilities of the MP model are given by

pMP
(i1···il) =

l∏
j=1

ηij

cl1

K∑
k

πkλ
l
kp

k
(0)

l∏
j=1

(
1 − λk

c1
ηij

)−1

, (24)

where pk indicates the probabilities due to the k-th component and pk
(0) is

given by pk
(0) =

N∏
j=1

(1 − ηj,k) =
N∏

j=1

(
1 − λk

c1
ηi

)
.
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By using Theorems 3 and 5 together, any component of the standard

θ-coordinates of the MP model is represented by the original parameters of

the MP model. For example, the first and second order components of the

standard θ-coordinates is given by

θi = log
ηi

1 − ηi
+ log

K∑
k
πkp

k
(0)

(
1 − c1−λk

c1−λkηi

)
K∑
k
πkp

k
(0)

(25)

and

θij = log

(
K∑
k
πkp

k
(0)

)(
K∑
k
πkp

k
(0)

1

1−λk
c1

ηi

1

1−λk
c1

ηj

)
(

K∑
k
πkp

k
(0)

1

1−λk
c1

ηi

)(
K∑
k
πkp

k
(0)

1

1−λk
c1

ηj

) . (26)

The higher-order interaction terms, such as θijk, θijkl (and so on), can be

derived in a similar manner. In the above equations, first, note that the

1st order term θi indicates that the MP model deviates somewhat from a

Poisson process. Second, the MP model induces the 2nd-order interactions

as evident in the above expression. More generally, the MP model induces

the higher-order interaction, despite the fact that each component of the MP

model (i.e. each Poisson process) itself does not have any interaction term.

This is because the summation terms in the pMP appears as a ratio (and is

not cancelled out) in computing the θ-coordinates Third, the term θi1,...,il

of the MP model is permutation-free over its given indices, {i1, ..., il}, or

equivalently that the value of θi1,...,il depend upon the choice of the indices

only through the magnitudes of {ηi1 , ..., ηil}. Mathematically, this is clear

because the term θi1,...,il depends on the bin indices only through the term
l∏

j=1

(
1 − λk

c1
ηij

)−1
. With this property, for example, θij = θi′j′, if (ηi, ηj) =
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(ηi′ , ηj′) or = (ηj′ , ηi′). Such a property does not exist in the IM model.

Finally, we observe that the MP model tends to produce components of

comparable magnitude in each order interaction when the order (i.e. l) is

not too high. To see this, first note that it is reasonable (in most cases at

least) to assume 1 
 ηi,k = λk
c1
ηi for any i, k. Then we have approximations,

pk
(0) 	 exp

(
−λk

c1

∑
i ηi

)
= e−λk and

l∏
j=1

(
1 − λk

c1
ηij

)−1 	 1+ λk
c1

l∑
j=1

ηij . With

these approximations, the summation term of pMP is

K∑
k

πkλ
l
kp

k
(0)

l∏
j=1

(
1 − λk

c1
ηij

)−1

	
K∑
k

πkλ
l
ke

−λk

⎛
⎝1 +

λk

c1

l∑
j=1

ηij

⎞
⎠. (27)

The l-th order term θi1,...,il is represented by a ratio of these summation

terms and in each summation term, the bin indices appear only as
l∑

j=1
ηij ,

as evident in the above approximation. Because 1 
 ηi can usually be

assumed and the difference among ηi is of secondary order, the magnitude

of the same order interaction is expected to be similar, as far as the order

l is not so large. This implies that in such a case, parameters of {πk, λk}
becomes dominant factors in the interaction terms.

Example; We illustrate our observations on the MP model, using some

examples (Fig 4). In Fig 4 A is shown the PSTH and spike count distribution

of the MP model and the corresponding θ-coordinates (up to the 6-th order;

i.e., from θi to θi1,...,i6). Since the PSTH is uniform, there is a single value

at each order. As mentioned above, we see the 2nd-order and higher-order

interaction exist. At the same time, their magnitudes are relatively small

(e.g. compare with those shown for the MIM model in Fig 3.) In Fig 4 B-D,

only a part of the original parameters ({ηi, πk, λk} ) is changed from those
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of Fig 4 A; namely {ηi}, {λk} and {πk} are changed in Fig 4 B, C and D,

respectively (see figure legend for details). A variation of {ηi} induces only

a small variation in θ-coordinates, i.e, comparable magnitude in each order

(Fig 4 B). Compared with the change in {ηi}, the change in {λk} or {πk}
induces a relatively larger interaction term (Fig 4 C, D.)

5 Discussion

Different generative point process models are expected to give results with

different high order statistical moments. Because the information geometric

(IG) measure provides a complete space for representing point processes, any

point process model can be mapped into this space, allowing the subspaces

occupied by different models to be located, described and compared. The

two models examined in this manuscript, the inhomogeneous Markov (IM)

and mixture of Poisson (MP) models, were constructed to account for the

interval distribution and count distribution, respectively. In their native

forms it is difficult to quantify the ways in which the high order moments

differ.

However, the differences between the IM and MP models can be seen well

by using the first cut mixed coordinates, (η1;θ2, · · · ,θN ), and inspecting its

2nd and higher components, θ2, · · · ,θN . The two models differ only in the

2nd and higher-order terms. For θij (or equivalently θ̃i,j) the 3rd and higher-

order interaction terms have a structure of alternating signs in the IM model.

The components are permutation-free, and of comparable magnitude for the
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MP model, at least for the first few components (e.g, Eqns 26, 27), whereas

the components represented by successive information geometric terms may

vary considerably for the MIM model (cf Eqns 20, 21).

The results from this analysis make it possible to consider what would be

required to distinguish between these models for experimental data. Con-

sider the IG 2nd-order model (which is natural as 2nd-order model under

maximum entropy principle), using log p(xN ) =
∑

i θixi +
∑

i,j θijxixj − ψ.

In this reduced form, the two models are different in {θij}. We approxi-

mate the MP model, i.e., components of comparable magnitude, by letting

θij = θ. The MIM model is similar to letting {θij} be a specific sequence (a

function of {ak}, cf Eq 21.)

Experimental datasets are often (perhaps even always) too small to com-

pare higher-order interactions above about three-way. However, it might

require less data to recognize that {θij} are approximately equal or that

they seem to follow the prediction of the {ak} than to use the models, as

originally formulated. The two models might be distinguished by inspecting

whether the 2nd and 3rd order interaction terms have alternating signs, i.e.,

θi1i2···ik = ( −1)k θ̃i1,ik (k ≥ 2), so the third-order interaction is negative if

the second-order interaction is positive, and vice versa. If there is a positive

correlation of spikes between two bins (e.g. at i1 and ik bins), and a posi-

tive correlation among the spikes for three bins (e.g. at i1, ik, and il bins,

where l is one of {2, ..., k − 1}), the data can not have come from a process

described by the IM model. If the correlations are of opposite signs, then

the data could have come from either model (in the MP models, the third-
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order interaction can be positive or negative, regardless of the sign of the

second-order interaction) and it would be necessary to examine higher order

interactions. There has been to our knowledge no experimental study sug-

gesting alternating sign interactions over the 2nd and 3rd-oder interactions

that is predicted by the IM model. Previous studies found only positive (not

negative) third-order interactions for single and multiple neuron spike trains

at least in a few cases (Abeles et al., 1993; Riehle et al., 1997; Prut et al.,

1998; Oram et al., 1999; Lestienne and Tuckwell, 1998; Baker and Lemon,

2000). However, one needs to be cautious because it is possible that the in-

vestigators were mostly interested in finding positive interactions, whether

second, third or higher-order.

There are two caveats to consider when comparing the two models with

data. First, other sources of experimental variability may add difficulties.

For example, the latency might vary across trials. This source of variability

is not considered in the models but it surely affects the interaction terms.

Second, in fitting experimental data, the PSTH ({ηi}) was smoothed in

both models. Smoothing reduces the effective dimensionality of the models.

The MIM model had additional smoothing to estimate {η̃i,j}, reducing the

model dimensionality even further. Smoothing affects, or blurs in general,

all interaction terms and if too severe, will make it difficult to distinguish the

two. Either of these circumstances could mask real differences in the data.

Despite the caveats, however, the results here suggest that experimental

data might distinguish between the models by comparing the two and three

way relations among spikes. Finally, our approach is applicable to other
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descriptive models of single neuronal spike trains and can be combined with

analysis of activity in neural population (Nakahara and Amari, 2002b).
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Appendices

Appendix A

The IM assumption is given by, for any spike event, x1
s(l) (l ≤ n),

P
[
x1

s(l)

∣∣∣x1, · · ·xs(l)−1

]
= P

[
x1

s(l)

∣∣∣x1
s(l−1), x

0
s(l−1)+1, · · ·x0

s(l)−1

]
= K̃s(l−1),s(l)

where l = 2, ..., n (potentially n is up to N). Under the IM model, the

probability of any spike train is written by two quantities, namely ηi and

K̃i,j . First note that we have

P
[
XN = xN

]
= P

[
x0

1, · · ·x1
s(1), · · ·x0

s(2)−1

]
P
[
x1

s(2), · · ·xN

∣∣∣x0
1 · · · x1

s(1), · · ·x0
s(2)−1

]
.

Second, under the IM assumption, we can write

P
[
x1

s(2), · · ·xN

∣∣∣x0
1 · · · x1

s(1), · · ·x0
s(2)−1

]
=

n
Π
l=2

q̃s(l),s(l+1)K̃s(l−1),s(l), (28)

where we define

q̃s(l−1),s(l) ≡ P
[
x0

s(l−1)+1, x
0
s(l−1)+2, · · ·x0

s(l)−1

∣∣∣x1
s(l−1)

]
, (29)

for l = 2, ..., n, with the convention s(n + 1) = N + 1. To see that {q̃i,j}
is determined solely by {K̃i,j}, note that we have K̃i,j = 1 − q̃i,j+1

q̃i,j
. Given

this identify, we have q̃i,j =
j−i−1

Π
l2

(1 − K̃i,i+l)q̃i,i+2 and q̃i,j+2 = 1 − K̃i,i+1.

Therefore we obtain

q̃i,j ≡ P
[
x0

j−1, x
0
j−2, · · ·x0

i+1

∣∣∣x1
i

]
=

j−i−1

Π
l1

(1 − K̃i,i+l). (30)

Third, by defining Pinit = P
[
x0

1, · · ·x1
s(1), · · ·x0

s(2)−1

]
, we have, under the

IM assumption,

Pinit = P
[
x0

1, · · ·x1
s(1)

]
P
[
x0

s(2)−1, · · ·x0
s(1)+1

∣∣∣x1
s(1)

]
= P

[
x0

1, · · ·x1
s(1)

]
q̃s(1),s(2).
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In the original work (Kass and Ventura, 2001), there was no explicit mention

of how to treat the quantity P
[
x0

1, · · ·x1
s(1)

]
, but, with our understanding of

its spirit and our preference of simplicity, we define this quantity as

P
[
x0

1, · · ·x1
s(1)

]
=

{
s(1)−1

Π
l=1

(1 − ηl)

}
ηs(1).

Then, we obtain

Pinit =

{
s(1)−1

Π
l=1

(1 − ηl)

}
ηs(1)q̃s(1),s(2). (31)

Taken all together, Proposition 1 is proved.

Appendix B

It suffices to obtain θi and θ̃i,j in order to get the values of the standard

θ-coordinates of the IM model, since we have

θi1i2···ik = ( −1)k θ̃i1,ik (k ≥ 2).

To compute θi and θ̃i,j , it suffices to obtain the expression of p(0), p(i) and

p(ij), due to Eq 13. Using the notation q̃i,j (see Appendix A), we have

p(0) =
N∏

i=1
(1 − ηi) and

p(i) =

{
i−1∏
l=1

(1 − ηl)

}
ηiq̃i,N+1, p(ij) =

{
i−1∏
l=1

(1 − ηl)

}
ηiq̃i,jK̃i,j q̃j,N+1.

Therefore, by using the identity q̃i,j =
j−i−1∏

l=1

(
1 − K̃i,i+l

)
, we get

θi = log
ηi

1 − ηi
+ log

N∏
l=i+1

1 − K̃i,l

1 − ηl
, θ̃i,j = log

K̃i,j

ηj
− log

N∏
l=j

1 − K̃i,l

1 − ηl
.

By using K̃i,j = ηjKi,j , we get the expression in the theorem.
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Figure legends

Figure 1: Schematic drawing to show that each parametric model for spike

train description is embedded as a subspace in a full probability space. Given

a parametric model, estimating the parameter values (or the probability

distribution) from experimental data corresponds to identifying a ’point’ in

the subspace.

Figure 2: Schematic drawing to indicate how raw experimental data is con-

verted to estimation of parameter values of the two different models. The

raw data, or raster data (top), can be converted to different formats of data,

namely Ki,j , PSTH, and spike count histogram (middle). For the MIM

model, Ki,j = aj−i and PSTH data is used, whereas for the MP model,

PSTH and spike count histogram is used. The case of the MIM model, not

of the IM model is shown here only for presentation simplicity.

Figure 3: Example for illustration of MIM model. In each row (A-C), shown

is the relationship of the original parameters ({ηi} i.e. PSTH, and Ki,j = ak,

where k = j−i, in the case of MIM model) in two left subfigures with the ISI

(inter spike interval) distribution and the θ-coordinates, (θ̃i,j) in right two

subfigures. Only {ηi} is changed in (A)-(C); uniform in (A), with the ratio

of 1 : 2 in (B),with the ratio of 1 : 3 in (C). Dashed line in the ISI figure is

the distribution if we assume the inhomogeneous Poisson distribution with

the same form of PSTH. The shaded region in θ̃i,j subfigure indicates the

range of the values that it takes, given a fixed k = j − i. The thick upper
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and lower lines indicate the maximum and minimum values obtained by the

approximation (in the main text.)

Figure 4: Example for illustration of MP model. (A) Shown is the relation-

ship of the original parameters ({ηi} i.e. PSTH, and {πk, λk} ), in two left

subfigures, with the different order of θ-coordinates θi1,...,il, where l is up

to 6, in right subfigure. Here {ηi} is uniform, given by ηi = 0.03 (30 Hz);

πk = 0.5 (k = 1, 2) ; λ1 = 4 and λ2 = 8. Dashed lines in the spike count

figure indicates the distribution of each component (without weighing by

πk) in the mixture of Poisson distribution. This model is used as a refer-

ence. In the following figures (B)-(D), only some of the original parameters

are changed, which is shown, and the adjacent figure is the corresponding

θi1,...,il. Note that in changing some of the original parameters, the con-

straint c1 =
N∑
i
ηi =

K∑
k
πkλk should hold. (B) Only {ηi} is changed; the

ratio of {ηi} is changed as 1 : 2 and 1 : 9 in the left and right, respectively.

In each order, there can be different values, due to the combination of the

indices of {i1, ..., il} and the number of variation in each order results in

l + 1. To show the variation, the plotted values in each order are slightly

displaced horizontally. (C) Only λk is changed; (λ1, λ2) is (2, 10) and (1, 11)

in the left and right, respectively. We do not show the case such as (0, 12)

or (6, 6), because they correspond to a single Poisson distribution. (D) Only

πk is changed; (π1, π2) is (0.2,0.8) and (0.8,0.2) in the top and bottom, re-

spectively. Due to the constraint of c1, the summation of ηi changes in this

case and therefore, the corresponding PSTH is also shown.
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Figure 2

0 100 200

PSTH

time

# Spikes

0 100 200
0

100

200
raster

Tr
ia

ls

[Prob]

[ms]

Fr
eq

.

0

50

100

0 8 16
0

0.06

0.12

MIM model MP model

ηη ηη1

1 1

, ,
, ,

N

Na a −

ηη ηη
ππ λλ
1

1

, ,
,

N

k k k K{ } =( )

ra=

r (r = j-i)
0 100 200

K i j,

0

0.8

1.6
[Hz]

time [ms]

[num]

Figure 2/Nakahara

Figure 2:

42



Figure 3
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Figure 4
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